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Sequence alignment is one of the most important bioinformatics tools for modern molecular biology. The
statistical characterization of gapped alignment scores has been a long-standing problem in sequence alignment
research. In this paper, we provide a self-contained exposition of sequence alignment, a short review about how
this problem is related to the directed polymer problem in statistical physics, and some analytical results that
can be used for predicting alignment score statistics. Basically, we present two classes of solutions for the
gapped alignment statistics by explicitly calculating the evolution of the few-replica partition function in 1
+1 dimensions. We have obtained the conditions under which the more important extremal pangmeter
characterizing the alignment score statistics, becomes predictable.
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I. INTRODUCTION mapped into the Kardar-Parisi-ZhanigPZ) equation[12]
which describes surface growttroughening under spa-
The directed polymecpath in random medig DPRM) tiotemporal noise, and has been intensively studied for many
problem [1-3] is one of the best studied systems with years[13].
guenched disorder. In d+1 dimensional DPRM system, Recently, this system has found another manifestafion
there ared regular spatial dimensions and one timelike di- sequence alignmerfit5,17, one of the most powerful tools
mension that is singled out to specify the elongated directiofn modern molecular biology. Computer-assisted sequence
of the path. The displacement made by the DP, when proalignment has become increasingly important due to the
jected onto the timelike direction, is often identified as therapid growth of DNA and protein databases. The use of se-
lengthof the DP. Due to the presence of the quenched disorduence alignment ranges from identifying the possible func-
der, the system’s free energy depends on the particular redionality of newly sequenced DNA/protein to the construc-
ization of the disorder involved, and it is the probability dis- tion of phylogenetic trees[18-2Q. Under sequence
tribution function(pdf) of the free energy that characterizes alignment, the relatedness of two sequences compared is
the statistical properties of the system. The pdf of the fre€luantified by an alignment score and its associgtedlue.
energy can be obtained in various ways. It can be obtainedhe latter is the probability of obtaining the same or even
directly by numerical means, or it can be characterized by it§ligher score by aligning two uncorrelated random sequences,
moments which sometimes can be analytically calculated, oand thus provides a more meaningful measure of homology
it can be mapped to other problems whose solutions aréetected.
available. Unfortunately, rigorous results relating the values to
The basic idea of the moment method is to use the replicalignment parameter®r scoring functiop employed exist
trick [4] and the cumulant expansids]. One first writes  only for gapless alignment, which is less sensitive in detect-
down, under a given realization of the disorder potential, thdéng distant homology. When gaps are allowed, the score dis-
partition function ofn identical Copies of the system; one tribution is known empirically to follow a similar form but
then performs the anneal average of ﬂumphca partition the full characterization is still incomplete. In a few previous
function over the disorder; the replica numberis then  publications[21-23, we have shown that the more impor-
treated as a continuous variable conjugate to the free enerdg@nt extremal parametex of the score distribution can be
to provide the cumulant expansion. Although there is somédredicted if a simple procedure is followed. We call this case
limitation to the validity of such inferenc—8], it neverthe-  the first solvable class.
less provides a valuable analytical route to tackle such prob- In this paper, we show that there exists a second solvable
lems. In 1+1 dimensions, the replicated system can bélass, and provide the detailed procedure for obtaining this
mapped[2] into a one-dimensionail-particle system whose solution via computing the two-replica partition function ex-
ground state energy can be found exactly, whence the physactly. We have also recently shoy24] that the combination
cal properties of the original system in the infinite length
limit can be inferred. "When cast in the language of DPRM, there does exist a subtle
In terms of mapping to other problems, the DPRM can bejifference between the sequence comparison and the regular DPRM
mapped9] into the noisy Burgers equatigmQ], whose criti-  problems in terms of the noise correlatiqad]. Nevertheless, it has
cal exponents in 1+1 dimensions have been workeddijt  been argueg15] and shown numericallj16] that such a difference
With a direct Hopf transformation, the DPRM can also bedoes not lead to much effect.
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a A A CT= G =TT G A~ paiing denote the combination of the substitution matrix and the gap
é g s E 3 — Ga penalty function used for sequence alignment. Under a given
b: A — —G G C T G G P scoring function, the associated alignment score of the ex-

ample in Fig. 1 will be s(A,A)-¥(1,31,2+s(G,G)
FIG. 1. An example of global alignment between sequeace —y(4,4{3,4)+S(T,T)+S(T,G)+S(G,G), which consists of
andb. five pairwise substitution scores and two gap penalties. Al-
though there are many possible alignments, corresponding to
of these two classes and the employment of a cooling magifferent arrangements of gaps and substitutions, between
enables us to extend extremal parameter predictability to gawo sequences, one usually refers to the alignment with high-
neric finite-temperature alignments, including the probabilisest alignment score as thptimal alignmentand its associ-
tic alignments and the optimal alignments. The main result$ted score as thalignment scoreThe alignment example
that are related to alignment score statistics are summarizeghove is often termeglobal alignmentsince the two se-
by Egs. (45, (90), (109113, (119, (120), (126, and quencega andb) are aligned from head to toe.
(127). Equation(59) and the remarks around it can also be of = The more frequently used alignment method, however, is
important use in the study of granular systems. local alignment Local alignment aims to find only the most
This paper is otherwise organized as follows. In the fol-homologous segments, one from each sequence compared,
lowing section, we give a self-contained introduction to se-nstead of finding the optimal global alignment between the
quence alignment, establish notation, and explain the condtwo sequences. Under a scoring function, the most homolo-
tions for solvability. In the third section, we focus on the gous pair of segments between two Sequen{;m\d b is
so-called linear gap case. Both the first solvable class and ﬂ]ﬁentified with the subsequenéeof a and the subsequenﬁe

second solvable class will be presented in detail to pave th8f b such that the global alignment of these two subse-
way for the more elaborate affine gap case. Since this is the .

case that is closely related to the traditional DPRM problemduéncesa andb yields the highest alignment score. In this
we also provide some details regarding the two-replica®ONtext, thenighesiglobal alignment score resulting from the
bound state which can potentially be used to construct th@!0Pa! alignment of all possible subsequence pairs is also
many-replica solutions. In the fourth section, the key resultéei_rmed as theptimal local alignment scorer simply the

for the second solvable class under the affine gap costs Wiﬂlgnhment S_CO”? _ di i < of
be described. The more detailed but important intermediate 1 N€ Scoring function used in sequence alignment is often
steps, however, are relegated to the appendixes for readé?@s'gned by experienced biologists. Different substitution

interested in the detailed procedure. A summary and som@atrices are designed for capturing different types of simi-
concluding remarks constitute the last section. larity .(or'evolutlo.nary distancesThe most commonly used
substitution matrices are the PAM seri@s] and the BLO-

SUM series[26]. The careful curatorial work that has gone
Il SEQUENCE ALIGNMgggQII_\IéDMTHE DIRECTED PATH into the construction of the PAM and BLOSUM matrices has
rendered them extremely valuable tools for studying and de-

Sequence alignment can be used to identify h0m0|0g)pecting similarities across a great spectrum of protein fami-
between protein or DNA sequences. An alignment betweelies, and these or related matrices are used by default in the
two sequences and b, which themselves can be subse-Most popular protein database search programs such as
quences of some longer sequences, is given in Fig. 1. In thiSTA [27] and BLAST [28]. The gap penalty function can
particular example, both sequences contain seven charactefgve many variants. The most commonly used gap function
a=[AACGTTQ while b=[AGGCTGQ. We will use the no- is the so-called affine gap function where the gap function
tation a; (bj) to refer to theith (jth) character of sequence ¥ (i0it |jo.j¢) depend only on the lengths of each unpaired

a(b). Thus,az is C, bg is T, etc. substring, i.e.,
The quality of an alignment is usually quantified by the o o o
associated alignment score, which is the sum of pairwise (it liode) = €1 =it i, 2=~ o),

substitution scores(a;,b;) and gap penaltiey (io,iljo.js)-
Here s(a;,bj) denotes the pairwise substitution score when ;i
we pair up charactes; from sequence with the characteb;

from sequencd. Because of its dependence on two charac- 0 0.=046,=0
ters (indice9, a set of substitution scores is often called a ’ 1T

substitution matrixor scoring matrix A gap is formed when _ S+e(ly-1), €,=1,6,=0
a character from one sequence is not paired with any char- ¥ (£y,62) = Ste(f,—-1), €,=04,=1

acter from the other sequence, and the functidny, i jo,js) —

returns the gap penalty when the substrifgfsconsecutive 0+25+e(ly+6,-2), ©1=16=1.

characterp (& ;1, ....& ] and[bj .1, ...,b; ] are not paired 1)

with characters from their respective countersequences. Ap-

parently, the casi=i (or jo=j;) indicates that the substring The parametee is called the gap extension penalty; e is

[@ij+1, .- ] (Or [ 41, ... by ]) contains no characters. called the gap initialization cost, whil&is an extra penalty
It is a common practice to use the teseoring functionto ~ when both¢; and €, are not zero. As we will describe later,
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Define the auxiliary quantit$,, , that records the highest
global alignment score for alignment paths starting at the
origin (0,0) and terminating at poinfm,n). It is not hard to
see that for the linear gap case the auxiliary quarfty,
obeys the following recursion relation:

and Syzg0=-Me.

.7

oy

5

t=m+n

(7.4)

Sn-1n-1+ S(@m,bn)
Sn1n~&Shn-17 €

with the boundary conditions

Snn=ma 2)

5

G G C T G G

<
(0,0)

Son=0="Ne (3

, , _ The alignment score is then obtainedSgy and the as-
FIG. 2. The alignment lattice. Upon laying sequeaadiong the ¢ iiataq optimal alignment is obtained by thace-back

horizontal axes and sequenttalong the vertical axes, we note that method[18]

the directed path here uniquely represents the alignment shown in For |Oca|' alignment, one compares not only among the

Fig. 1. The new coordinate systgo=m-—n,t=m-+n) is also shown lobal ali ¢ th' hich start at th . dt .

to illustrate the connection between the recursion rela®rused global alignment pathswhich start a .e origin and termi

in sequence alignment and the corresponding @#® used in nate'at(M,.N), but rather among the allgnment paths yvhose

DPRM. starting point can be anywhere on the alignment lattice and
whose terminating point can also be anywhere on the align-

ment lattice. In particular, the local alignment actually allows

A A C G T T G

the case that is of strongest connection to DPRM is the line
gap limit, i.e., whene=§ and 6=0.

The Needleman-Wunsd29] algorithm for global align-
ment and Smith-Waterman algorithf80] for local align-

%he null alignment, i.e., an alignment whose starting point
and terminating point are the same on the alignment lattice.
This seemingly difficult task was solved elegantly by the
Smith-Waterman algorithmi30]. Here one again introduces

ment are well established. In the following, we will sketch the auxiliary quantityH,,, which now records the highest

both algorithms together with their finite-tempel’ature COUn'g|oba| a"gnment score 'for a"gnment paths terminating at
terparts, including the Hidden-Markov-Mod¢iMM) based  point (m,n) regardiess of where the path start. Interestingly,
algorithms, and make connections to the DPRM problemihis new auxiliary quantity obeys a similar iterative equation
For a more detailed exposition relating the finite-temperature

algorithm to the HMM based algorithm, see referefi2g. He1 et + S(@m )
Hm,n =ma ’ 1 (4)
Hm—l,n - 8:Hm,n—l -¢,0
A. Alignment algorithms with even simpler boundary conditions
We will first sketch the optimal alignment algorithms for
both global alignment and local alignment, and continue with Hon=0=0 and Hp=00=0. (5)

their finite temperature counterparts in order to elucidat
their connection to the DPRM problem. Useful notation will
also be established along the way.

Let a=[a4,ay,...,ay] andb=[by,b,, ... ,by] be two se-
quences of lengthM andN, respectively, with elements;
and b; taken from a finite character sgt Under a given
scoring function, i.e., a substitution matrix and a gap func-
tion, one can align these two sequences either locally or glo-
bally using the algorithms below.

?\Iote that the introduction of O into the choice in Ed)
allows for a new starting point when the current best score is
still below the threshold 0. The final alignment score is then
obtained by

S[a,b;s,y]= max {Hnyn}. (6)

1=m=M
1=n=N

When the affine gap function is used, more auxiliary
guantities are needed. Indeed, for global alignment with af-
fine gaps, three auxiliary quantiti, ,, S5, and S, are

The optimal alignment algorithms aim to find the align- defined through the recursion relations
ment resulting in the highest alignment score defined earlier. B
This is usually carried out by using the so-called dynamic §m_ Sn-10-1+ S(@m,bn),
programming method. Let us start with the global alignment
algorithm by Needleman and Wuns¢R9]. For clarity, we s%ﬂ: ma>{§)_1’n_ 5,52_“]_8},

S?],n—l =6, gm,n-l - &
gr:r)l,n—l -6-6

1. Optimal algorithms

7
introduce the alignment lattice in Fig. 2 with sequeadaid "
along thex direction and sequende laid along they direc-

tion. Note that the alignment example given in Fig. 1 is
shown as gdirected path in the alignment lattice. In fact,

each alignment is represented by a unique path and vice
versa. with

Spn=ma
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Snn=MaXSy, . S St (8) Foxt)=-r In{ S exd- E(A)/T]} (13)

and boundary conditions Al

§ _ % - where the sum is over the paths terminating at point), 7
n=0"""h=0,0 ' is the temperature of the system, aBd4), sum of the ran-
dom potentials and the elastic energies contributed by all the

S?>0,0= Sln>0 =6+(n-1De, © bonds traversed by the path, is the energy associated with
the pathA.
ﬁmo: S?>o,o: -, At zero temperature, the free energy is the energy of the
lowest energy path. Writing the elastic energysa®ne can
QO: 0. write down easily the transfer matrix for finding the lowest

o , . ) energy path and its associated energy via the following re-
Similarly, for local alignment with affine gaps, three other . sion:

auxiliary quantitiesHy, ,, H> ., andH], , are defined through
the recursion relations E(x,t—1) +u(x,t— 1)
HS, 1 1+ S(@m by Ex=minEx-1t-1)+e . (14
Hﬁl,n: m Hr?w—l,n—1+s(amybn) ) E(x+1t-1)+¢
Hin-1n-1+ S(@m,by), 0 The lowest energy at time is then given by
Hz,n = ma){Hﬁl—l,n =9, Ha—l,n - 8}! (10) fT':(In E(X'T ) (15)
| Hﬁm—l_ 5=H|mn—1‘ e By introducingx=m-n andt=m+n, we can rewrite the re-
Hpn=ma D’ — cursion(2) in terms ofx andt
Hop1= 8-8
with S(x,t—2) +s(x,t—1)
S D . S(x,t)=max Sx-1t-1)-¢ , (16)
Hm’n = ma){Hm‘n,Hm’n,Hm’n}, (11) gx_‘_ 1,t _ 1) -

and the boundary conditions with s(a,,,b,,) rewritten ass(x,t—1). The reason we did not

Hon=0=Hn=00=0, write s(a,,b,) ass(x,t) comes from the observation that the
(12 letter pair(ay,b,) is located aim-1/2,n-1/2), not(m,n),
HE m=0=Hom=0=Hme0,0= Hin=00= = . on the alignment latticésee Fig. 2 Note that if one defines

: S . S(x,t) =-E(x,1), then the above recursion is turned into
The optimal scoré s still given in terms of théd's accord-

ing to Eq.(6). E(x,t-2) - s(x,t-1)
E(x,t)=min E(x-1t-1)+¢ . (17)
E(x+1t-1)+e¢

2. Finite temperature variants and DPRM

The recursion2) in fact is a commonly used approach,
i.e., the transfer matrix, in statistical physics. In particular, itTherefore, the negative of the substitution score plays the
is very similar to the transfer matrix used to tackle the zeraole of the potential and the gap cost plays the role of elastic
temperature DPRM problem in 1+1 dimension. For a de-energy. However, we also note that the recursion in(E@)
tailed review of the DPRM problems, readers are referred tqses energies at tinte-2 andt—1 to update energies at time
Ref. [13] and references therein. In a 1+1 dimensionak, while the energies at timeonly depends on energies at
DPRM system, each lattice point is labeled by two discret@ime t—1 for the recursior{14). This slight difference actu-
indicesx andt for space and time, respectively. ally makes the solution of the sequence alignment case con-

To illustrate the connection between DPRM and the sesiderably more involved than the DP case.
quence alignment problem, we focus on the following vari-  The similarity between the two recursio(i4) and (16),
ant of DPRM. A directed pathd starting from the origin  however, immediately leads to the finite-temperature gener-
(x=0,t=0) can be regarded as the “world line” of a particle alization of Eq.(16). Introducing the temperature, the
in one dimension. For a given realization of randomness, &Boltzmann weight’W(x,t), the gap weightv=exp(—-g/7),
random potentiali(x,t) is assigned to the bond connecting and the substitution weight(x,t)=exds(x,t)/ 7], we write
lattice points(x,t+1) and (x,t). There is also aonstant down the recursion for the Boltzmann weight
elastic penalty associated with each bending of the path, e.g.,
going from(x,t) to (x—1,t+1) instead of to(x,t+1). The W(x,t) = v [W(x - 1,t = 1) + W(x+ 1,t - 1)]
guantities of interest include the free energft) and the +o(xt— DWX t - 2), (18)
restricted free energyF(x,t), which are related through
F(t)=2,F(x,t). The restricted free energy is defined by or using the originalm,n) indices
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Wm,n =+v [W -1nt Wm,n—l] + Um,nWm—l,n—la (19) L@(X,t;X',t') = g(x,t;x,t’) - V[@(X -1t- ]_;x’,’[’)
with vy, =exds(@m, by)/71=v(x,t-1). Using the appropri- +o(x+1t-1.x,t)]
ate boundary conditions, — o6t = DGOt = 22X ') = Sy e
an0,0: WO,nzO =" for Wm,n- (25)
W(x,t=0) = &, whereL is the discrete analog of¥¥2-v, and retardedness
for W(x,t) ;
W(x,t < 0)=0, requires that
it is easily shown that gxt<t"x',t') =0. (26)
It is not hard to see that th&/(x,t) for global alignment is in
W(X,t) =W, p = > exd-E(A)/7r] (200 factthe Green’s function with source poixt =0,t'=0), i.e.,
AH(mn) or (xt)} WI(x,t)=0(x,t;0,0). For local alignment, we can write the

correspondindgZ(x,t) as
sums the Boltzmann weight of every path starting from the

origin and terminating at lattice poiritm,n) or equivalently Z(x,t) = >, a(x,t;x' ), (27
(x,t). Note that W(x,t)=exd-F(x,t)/7] and Wy, <t

=ex{d—Fnn/7]. Both recursiong18) and (19) can be re-
garded as finite-temperature generalization of(2y.In fact,
the zero temperature limit is recovered by taking

because Eq(26) automatically takes care of the condition
that the source pointx’,t’) must be within the backward

light cone. Upon applying the linear operafoto Z(x,t), we

Snn=-lim Fpp=lim 7In Wy, , (21)  have
—0 —0
y o LZ(x,t) = X 806y = 1. (28)
for every (m,n). Furthermore, the total partition function is Wt
then obtained by summing ™" over the boundary points _ . .
of consideration. This formally explains why the +1 term appears in E@S)
Along a similar line, the finite-temperature generahzauonand(zz)
of Eq. (4) can be written as For the finite-temperature version with affine gaps, we
follow Eqg. (1) to obtain the affine gap weightg¢,,{,)
+o(xt-1)Z(x,t-2)+1 (22 (1.6 = vt 0,=1,4,=0 29
or gltq,€o) = wo il €1=0€221
Mr .MZ . V€1+£’2—2, 61 1 62
Zinn =V [Zi-1p* Zipeal + OmnZie ot 10 (23 w=exp—48/ 7) being the first gap weight an,d ex;i
Note that the boundary conditions are now given by ~617) being the extra gap weight. We introdue&s, ., W, ,
andW/|, . that are counterparts &, ,, S, ands, , respec-
Zn=00=Zon=0=1, forZm, tively in Eq (7). The recursions of these auxiliary quantities
’ ’ ’ are then given as
Z(x,t=1x) =1, for Z s s D \\D |
Z(x,t<|x)=0, or Z(x.9), W= 0mal Wi o1t 42 Weiina+ sn - Wy g ol
and the total Boltzmann weights from paths with all allowed W= 3 Weign+ Wiy,

starting points and terminating points can be easily written as
WI /-L2Wmn—l+ VWmn—1+:u /U“Zﬂlwran—lv (30)

Z=2 Zmn- (24) where parametersulD((z')) satisfy and ,ul : ,uz = ,ul- ,u'Z: m

m,n

=exp—-6/ 7). Note that the affine gap weight is not imple-
The +1 term in Egs(23) and(22) can be regarded as adding mented in the simplest manner here, since the Boltzmann
exp(0/7) or can be derived formally using the Green’s func- weight of each path satisfying the affine gap weight proper-
tion. Basically, any starting point is allowed for local align- ties (29) can be achieved without mtroducmg'f(z')s The
ments. For a path terminating at poifx,t), it can accom-  introduction of these extra parameters, however, is useful
modate any starting pointx’,t’) with ranges(-7+x<X"  when we identify the relationship between the finite-
<7+x,t'=t=7) O7=0, or in the backward “light cone” of temperature alignment and tipgobabilistic alignmentthat
the point(x,t). Let g(x,t) denote the retarded Green’s func- we will mention briefly later. The boundary conditions for
tion satisfying WSPlg are
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WgnBO:WLBOO: 0, of two uncorrelated random sequences receives an optimal
' ' scoreS.
Wn>00 :U«2V -, .
1. Gapless alignment
W oo = o™, (31) Clearly, the pdf(37) would depend generally on the se-
guence length$/,N, and the scoring functionsand y. For
WS 0=WS ,,=0, gapless alignment, the form of the distribution function is

known exactly{31-34 in the asymptotic limitM ,N>1. For

WS,0= 1 (32) all scoring systems satisfying the condition

The total Boltzmann weight of paths starting from the origin > p(a)p(b)s(a,b) <0, (38)
and terminating atm,n) is then given by abey

which includes all the PAM25] and BLOSUM[26] matri-
ces, the pdf reaches the universal form

D(S) = KMNA exd— AS - KMNe™S], (39

Win =W+ WP+ W =exd-Fn/7l. (33

For IocaI alignment with affine gaps, we again introduce
andZI , that are counterparts of S and

n’ mn’ m,n? mn'
Hgn, respectlvely The recursions of these auxiliary quantiknown as the Gumbel distributiof85]. This distribution is
ties are then given as specified completely by the two parametexs and K,
s _ s b -b . with a mean (S)=So=N"{y.+In KMN] where v,
Zmn=VUmlZman1t 41 Zmeapeat 41 L] + 1 =0.577 215 6... is the Euler constant, and an exponential tail
z0 =puSzS ., +vZ8 .., D(S > Sp) = AKMNe™S, (40)

characterized by the parameter
Z' Mzzmn 1t ernn—ﬁﬂ'ﬂlzﬂlzzn - (34 The theory of Karlin and Altschul provides explicit for-
mulas for these parameters in terms of the scoring funstion
For example)\ can be found as the unique positive root of
the equation

The total Boltzmann weight from paths that can start any-
where but terminate din,n) is then given by

Zmn—eX[{ an/T] [ZS +ZD +Z ] (35) E p(a)p(b)e)\s(ab)zl (41)

The total Boltzmann weight from all allowed paths on the abey

alignment lattice is again given by E@4). A more complicated expression exists for the calculation of

K, which we will not describe here but can be found 32].

B. Alignment score statistics

It is important to realize that the value of the optimal 2. Gapped alignment

scoreS does not in itself convey any meaning regarding the Compared to gapless alignment, the statistics of gapped
degree of homology between the sequences being alignedlignment for the null model36) are much more difficult to
One way to assess sequence homology is to compare tlaracterize. First of all, the average optimal sc8gedoes
scoreS with the optimal score of aligning sequences from anot always have logarithmic dependence on sequence
null model. A frequently used null model is that of the mu- lengths. For sufficiently small gap cost, the mean score in
tually uncorrelated Markov random chains of rank Zewn-  fact acquires dinear dependence on sequence length even if
der which the joint probability of observing sequeneesnd  condition (38) is satisfied, i.e..So=cN (for sequences of

b is given by lengthsM = N> 1), with the proportionality factoc=0 de-
pending on the substitution scores and gap cost. The critical
Poabl= [l plaw  plon), (36)  line c=0 defines the locus gfhase transitiorpoints[36—39
fmgN’V' separating the linear and logarithmic regimesSgf Various
=Nn=

statistical properties in the vicinity of this log-linear phase
wherep(a) is the background frequency for the elemant transition have been characterized in several recent studies
with =,_,p(a)=1. The pdf of optimal scores for the align- [39,40. Also, ample empirical evidendd6,41-4§ suggests

ment of random sequences is that the optimal scor8 of gapped alignment again obeys the
Gumbel distribution(39) in the logarithmic phase. However,
pdf(S) =(5(S - S[a,b;s, y])o, (37)  the functional dependence of the Gumbel parameteasd

K on the scoring functions is not known.

Recently, an efficient numerical method was developed by
Olsenet al. [16] to characterize the tail of the Gumbel dis-
tribution. The method utilizes intermediate computational re-

“This type of Markov chain is also commonly referred to as inde-sults, e.g., the restricted local alignment scétg,, also
pendent identically distributedid) chain. known as the “score landscape.” The landscape consist of a

where(...), denotes average over the null sequence distribu-
tion (36). The pdf(37) provides thep value that an alignment
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collection of positive scoring “islands,” i.e. clusters of posi- has also been used in Smith-Waterman—type local alignment:
tive H's, separated by a “sea” Bt=0. The peak scores of the In the HMM approach as implemented in the “sequence
islands are found to follow Poisson statistics. From this, thealignment and modeling” software suif&é5], local align-
Gumbel distribution of the optimal scof® can be derived. ment is accomplished by embedding probabilistic global
The study of island statistics indicates that the key to unalignment in between “free insertion modules,” which allows
derstanding the Gumbel distribution is characterization of thex part of a sequence to fit to the HMM. In a different ap-
probability tail of obtaining asingle large island, the statis- proach[56] probabilistic Smith-Waterman is realized by nor-
tics of which can be more conveniently studied in the contexmalizing the probabilistic version of global alignment against
of global alignment. Using the saddle point method, we gave reference with substitution weights all set to 1. In fact,
[21] a heuristic derivation of the Poisson distribution of the probabilistic alignment can be regarded as a special case of
large island scores. The results lead to the Gumbel distribuinite-temperature alignment in which the alignment param-
tion for the optimal scores, as well as the all-important Gum-eters are subjected to @obability conservation condition
bel parametek, in terms of the solution of the equation Thelz relason that the gap weightwas split into,u:,u,?-,ug’
. _ =1 U, IS to make it possible to satisfy the probability con-
Q) = ,L'Tm@hm% =1 (42 servation conditions.
The advantage of the probabilistic approach lies in the
Note thath(N)=max<j<n{S n, Sy}, With S;,, obeying Egs.  simple interpretation of the alignment parameters and results.
(2), (7), and(8), and(Syn)o<0 for largeN is also required For example, the abstract gap cost becomes a gap insertion
to ensure the system is in the logarithmic phase. The condprobability, and the local alignment score # with Z de-
tion (42) for the Gumbel parameter was also derived48] fined in Eq.(24), between two sequences becomes the over-
by first assuming the alignment score distribution follows theall log-likelihood of the evolutionary relation between the
Gumbel distribution. two sequences; see R¢21] for more details. However, the
The functionQ(\) contains a great deal of information probabilistic approach also bears distinct disadvantages.
and is difficult to compute in general. Only recently has itAside from a modest computational speed disadvantage, the
been computed[48] for a special choice of scoring probabilistic approach suffers from ill-characterized score
functions® with statistics—unlike the Smith-Waterman local alignment, for
. which at least the form of the optimal score distribution is
s(a,b):{ if a=b known for the null model, very little is known about the
-2e, if a#bh, distribution of the log-likelihood score 1& of the probabi-
] — . listic local alignment of random sequences. Arbitrary use of
and linear gap costé=¢,6=0), under the(weak approxi-  the z score has been shown empirically not to produce very
mation that the scorexa,,,b,) are uncorrelated for different good resultg57].
m's or n's. The resulting\(e) obtained in this case is in In a few previous publication§21,22, we proposed an
excellent agreement with extensive numerical simulatioralternative approach to sequence alignment. Our “semiproba-
[48], and demonstrates the validity of the form&). How-  bilistic” (or hybrid) alignment combines the advantages of
ever, the computation dd(\) for arbitrary scoring functions  both the optimizational and probabilistic approaches to local
remains unsolved. Along practical lines, Mott and Tr[B8] alignment. With the Boltzmann weight computed via Eq.
produced an empirical formula farwhich works reasonably (34), we construct the maximum log-likelihogLL ) score
well in the large gap-cost regime. Siegmund and Y§k0]

studied a similar limit where the maximum number of gaps ®[ab;v,gl= max {InZy.}. (43)
is finite. Despite all of these studies, the current understand- 1=m=M

ing of the statistics of gapped alignment remains very lim- 1<n=N

ited.

The MLL score is manifestly &ybrid of both the probabi-
listic and optimizational approaches to local alignment. Fol-
C. Hybrid alignment and solvability of A lowing reference[21], we refer to alignment based on the

The Smith-Waterman algorithrt6) and (10)12) is an M!_L score as “Semi!?robabilistic _alignrnent,” and refer to
example of an algorithm which looks for tleptimalsolution this algorlthml as the h_ybnd algorithm. -
to a combinatorial problem, the solution being in this case In fact, as indicated in Ref21], the MLL score statistics
the optimal alignment and the optimal sc@eAn alterna- follow the Gumbel form even before the probability conser-

tive approach to solving combinatorial problems such as se/ation conditions are imposed. The corresponding Gumbel
quence alignment is to look for a classmbbablesolutions. parameten can again be obtained by solving an equation

This approach has been taken in a number of previous stugimilar to Eq.(42) with h(N)=r InW, , i.e.,

ies of global alignment, e.g., the maximum-likelihood

method[51,52, the finite-temperature methdd7,53, and T ATy —

the hidden Markov model54]. The probabilistic approach lim (W w.9)]*" o= 1 (44)

*This choice of scoring functions corresponds to the problem owith A >0. The quantity\7\/t, which specifies the total Boltz-
the longest common subsequences, see Chavtal and S@Rpff ~mann weight flowing out of a fixed “time” slicd, is
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t=m+n v(am,b,) inevitably bears stronger correlations. The validity
of ignoring such correlations in the context of match-

_",7/‘1 mismatch—type of scoring was in fact raisddl] earlier and
was also shown numericall)L6,48 to be unimportant when

large score statistics are considered. Furthermore, when the
scoring function is more complicated, such as in the case of
the 20X 20 amino acid substitution matrix, the correlation
effect will be further reduced. Therefore, although our sec-
n ond solvable class is based on tixeak assumption that we
can ignore the correlation of the disorder potentigd,t) at
different times, it agrees with numerical studies quite well.
ib Note that in the sequence alignment problem the disorder

‘} t=6 potentialv(x,t) resides at the mid point of the bond connect-

ing the lattice pointgx,t—1) and(x,t+1). This is what make

the transfer matrix formalism of the system a little more

involved than the conventional DPRM.

(x==2,1=2) Since the\ parameter of the local alignment statistics

(x=1,t=1) happens to be expressed in terms of its global alignment
counterparts, from this point on we shall focus on ghabal
alignmentunless otherwise stated. In the following two sec-

FIG. 3. _The alignment lattice turned 45 ° counterclockwise COM-tions, we will provide the procedures for obtaining the sec-
pared to Fig. 2. ond solvable class as well as review some of the relevant one
replica results.
defined” by Eq.(50) for the linear gap case and defined by

Eq. (103 for the affine gap case. IIl. LINEAR GAP CASE
The solvability of Eq.(44) comes from the observation  Reca)| that for the linear gap case the Boltzmann weight
that when\ 7 is an integelR, the condition(44) becomes W(x, 1) follows the recursior(18)
tlim<[\7\/t(w, 9% =1, (45 WI(x,t+1)=v[W(x+1,t) + W(x— 1,)] + v(x,)W(x,t - 1),

L . . h 1) isth ituti igh is the li
whose left-hand side is the disorder-averaged partition func\fv erev(x,t) is the substitution weight andis the linear gap

. . .~ Aweight. In order to obtain the two solvable classes, we fur-
tion of an R-replica system. Here the random substitution 9

weightu(a,,, b) resulting from random sequence pdiasb] ther introduce the equivalent of chemical potentiain the
. 'on following fashi ing th Jt=1)= b1
will play the role of exp-u(x,t—1)/7] of the DPRM prob- ollowing fashion[remembering thah (x,t=1)=v(@m, by)]

lem. v(@m,by) — exd[s(am, by + 20]/7], (46)
WhenR=1, this corresponds to a one replica problem and
was solved21] by imposing the conservation of Boltzmann v — exf(- e+ o)1) (47)

weight, i.e., the weight flowing in equals the weight flowing
outon averageat each lattice point. We call it thiirst solv-  Basically,o can be regarded as the score gain per unit length
able class Within this solvable class\=1/7. Furthermore, Or the quantity - can be regarded as the chemical potential.
at =1 this class results in a direct mapping of the finite-For @ fixed scoring matrix and fixed gap castthe two
temperature alignment to probabilistic alignment. solvable classes impose different conditionsooat different

The second solvable clashaving\=2/7, comes from temperature resulting into the two expressiong(7;s,y)
R=2 (two replica3. Here the disorder average, introducing and o,(7;s, ).
the interactions between the two replicas, complicates the Although these expressions are important for the develop-
matter. For a generic DPRM problem, the disorders at differment of the “cooling map’[24], we will not delve into it
ent time are uncorrelated, therefore the interacting systernere. For the purpose of providing the conditions for the two
can still be cast in the transfer matrix approd6étb§. The  solvable classes, we simply focus on the relations among the
random sequences=[a,,a,, ... ,ay] andb=[by,b,, ... ,by],  Substitution weight®(x,t) and the gap weigh.
however, contain only [ random characters which is much .
less than thél(N-1)/2 random potentials of the correspond- A. One replica (R=1)
ing DPRM. The factoN(N-1)/2 is most easily seen from As explained earlier, the first solvable class happens at
Fig. 3 in which there ar&l(N-1)/2 vertical bonds under the |imtﬁw<\7\/t>0:1_ This condition was solvef21] by choosing

horizontal linet=N. Therefore, the random potential from
2v+(v(amby))o=1, (48)

*“The quantityW, is analogous to the quantiWiy y defined in[21] ~ Which then guarantees th&W),=1 for all t and conse-
that sums the Boltzmann weights flowing out of the boundarieqquently ast— . We will usev to denote the disorder aver-
(0=m=N,n=N) and(m=N,0<n<N). aged substitution weight, i.e.,
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v=w@b)= > p@pbu(ab). (49) different realizations of the disorder potential. Therefore,
abey ((W,=(Wy)g)?o>0, and consequentl(wvtz)o><V\/)02. For the

Before providing a rigorous derivation of the conditi#8),  two replica solution, we need to ke€p?), constant, which

let us first clearly define what, is in the context of the demands 2+v<1.
linear gap case:
B. Two replicas (R=2)

W, = W(x,t) + X, HOW(X', 1= 1). 50 ~ . . i
t EX: 1) 2’ v(x' W ) 50 To calculate(\/\/tz)o, we need to define a few notations first.

Let us denote the variance of the disorder potentidl dse.,

X

Note that ifx is summed over even integers thenwill be

summed over odd integers and vice versa. The open circles WX )= v = Ad Gy (55
in Fig. 3 indicate the vertices whose weights are summequ further define the following quantities:
over at timet=6. The double slash on the bonds indicate that '

no weight flow through those bonds should be included. D(Xg, %o, ) = (W(X1, ) W(X5, 1)), (56)
Let ¢(x,t) denote(W(x,t))y; we may then write down
easily the corresponding iterative equation & (X, %o, 1) = (W(Xg + 1.t + D)W(Xo,1))o, (57)
P t+1) =vep(xt=1) +v[p(x+ 1)+ p(x-11)],
(51 &~ (X, %0,t) = (W(Xq, ) W(Xp + 1.t + 1)) (58)
. _ It is obvious thatg™(X;,X,,t)=¢<(X5,X;,t) since the order

whereas the quantitf\y), is obtained by inside the disorder average does not matter, i.e.Whet)s
~ ) are commuting entities. Nevertheless, it turns out to be more

(Weo = g Pxt) + UE,' ¢(x' 1= 1). (52 convenient to define botkp™ and ¢=. The quantity(W?),

X can now be expressed in terms of s,

Equation(51) can be easily solved by going through discrete  _

Laplace transform and Fourier transforms. Defining (Woo= 20 (W(Xg, WX, 1))
X1,X
bs(x) = D F(x,b), (53) + 20 (W(xg, Do (x5, )W(X5,t = 1))g
=0 X%
. + LYW, t = D)W(X,,t
Bl = 3 &), (54 = (OGIWOGE= HWoa D)o
X 172
we obtain + 20 (W(X],Hu(xh, HWIXE, t = DW(x),t = 1))
Xq. X5
B5(X) = 80= Zvhs(X) + Zv [ha(x + 1) + (x — 1)],
- ’ ’ ’ = 3 plaxat) + 2 [AS 0 +07]b(xg, ot = 1)
$3(k) = 1 =[P0 + 220 cosk) 1 (k).
- +0 2 [ (X, X0t = 1) + ¢~ (X, %o, t — 1)].
Apparently, the quantity of intere$t\;), corresponds to X1.Xp
. _ _ Note that because of our definition g¢f” and ¢=<, the sum
~ (k=0 (k=0
<Wt>0:§¥ ¢Z(At+1 ) +U¢Z(2t ) over x;(x5) in (WWj, is replaced by the sum ove(x,) in
i z ¢~ and ¢=. If we Fourier transform¢ and ¢~(<), we see
dz 1 1+p2 that the most of the terms above contain only the zero mo-
=$ﬁ— le o - = mentum Fourier component, except the term multiplied by

Potilg 52 o5t

2m 271 -2 - 202 Aéxllxz, which gives rise to zero “center of mass” momen-

When v=(1-v)/2, we may rewritevZ>+2vz—1 asvz’+z tum, but collects the full spectrum of the “relative” momen-
-vz-1=(vz+1)(z-1). Therefore the contour integral be- tum.

comes The reason that using Eq&6)—<58) is sufficient for solv-
ing this two-replica problem relies on the decomposition of
gsd_i 1 i—l Ot unequal time correlations. Basically, Jif-t'|=2, sayt-t’
2m #11-2 ' =2, we havé

Whenv#(1-v)/2, the quantit{Wy), either diverges expo- 5Although we will not exploit this decomposition here, we would

nentially V\_’ith _time (when 2+v>1) or exponentiall_y de- like to point out that this feature can be used to compute the stress
creases with timgwhen 2+v <1). Because of the disorder g re|ations{59] between two points at different depths in a granu-
potential, we know thatV, will assume different values for lar system describable by tleemodel [60].
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(WX, WY, )Y = 25 (WXt )WY, E)oG0X, 15X, t))o

X/

= 20 (WX )WY, t))o{ WX = X', t = 1'))o.

x'

(59)

This decomposition happens because the disorder after time
t’ has no influence t&\(y,t’) and it is in general true that
g(x,t;0,0=2,0(x',t";0,09(x,t;x",t") and that upon dis-
order averagef{W(x,t;x’,t"))q becomes translationally in-
variant{W(x—x";t-t"))o, which is the¢(x—x’,t-t") defined

earlier in the one replica section.
We now study the iterative equations.

D(Xq, %o, 1+ 1) = (W(Xq, t + HW(Xo, t + 1))

= {o(x, OWI(xg, t = 1) + v [W(xg + 1,t)
+W(x; = 1,0 JHo (%, ) W(Xp, t = 1)
+ v [W(xp + 1,t) + WX, - 1) [Ho

= (A8, x, + 0)) h(Xg, %o, t = 1)
+vu[T (XX t = 1) + ™ (X, X~ 2,t = 1)]
+vu[d” (X, Xt = 1) + @7 (X — 2,%p,t = 1)]
+ 12 [pxg+ 1o+ 1) + (X + L X — 1,1)
+ (X~ Lxo+ 1) + (X, - 1 — L,1)],

(60)

B (Xg, %o, t+ 1) = (W(xg + Lt + 2)W(Xp, t + 1))g
= (W(x,,t + DH)W(Xq + 1,1+ 2))g
= (W(Xp,t + D{v(xg + Lt + DWI(x; + 1,t)
+ VWX + 2,t+ 1) + W(xg, t+ 1) ]}
=0~ (Xg + 1% = L) + v [p(Xy + 2%, t + 1)
+ Xy, X, t+ 1)1, (61)

&~ (X1, X, t+ 1) = (WX, t+ WX + 1t + 2))g
= (W(Xxq,t + D{v(xo + Lt + DHWI(x, + 1,t)
+ v [Wxo + 2,t+ 1) + W(xp, t + 1) [ho
=v¢ (X = 1 X+ 1Y) + v [ (X, %o + 2,1 + 1)
+ d(Xq, %o, t + 1)]. (62

Note that the recursive relations for E¢61) and(62) hold
true even if we set=-1. This simply relates the initial con-

ditions of ¢~ (=) to that of ¢.

Introducing the discrete Laplace and Fourier transforms

similar to Egs.(53) and(54), we have

[

Bo(xq, %) = 2 Zp(xXg, %o, 1), (63)

t=0

PHYSICAL REVIEW E 69, 061904(2004

Py) = 2 e D L obixX),  (64)

= eV gk(y). (65)
y

Upon discrete Laplace transform, we have
$5(X1, %) = Oy, 06x,0F Z(A O x, t v?) (X1, %)
+ Zv o[ 5 (X, Xo) + b5 (Xq, X = 2)]
+Zv U[¢§>(X1,X2) + ¢2>(X1 - 2,%))]
+ 27 [y(Xq + LYo+ 1) + ¢hs(Xq + 1., — 1)
+ (X1 — Lo+ 1)+ dy(x 1% - 1)], (66)
and
b5 (X1 X0) = 2 b5 (% + 1% = 1) + v [ hy(Xg + 2,%)

+ 5(X1,%0) ], (67)

B5 (X, %) =20 h; (X — LXo+ 1) + v [¢hs(Xq, %o + 2)
+ 5%, %) ]. (68)
We now do the first Fourier transform
$3Y) = 8,0+ Z(A8,0+vD) B5(Y) + Zr ol b5 (y)
+e g My + D]+ Zrul g (y) + €74y - 1]
+ 22 [XG(y) + e iy) + By + 1) + ¢y - 1),
(69

and

&Ky =2 Ky + D) + v [Py + 1) + S(y)], (70)

¢ ) =g Ky - 1) + v [ lly + D + gy)]. (7D)
We now proceed to do the second Fourier transform:
' =1+ PAHNy = 0) +[Pv?+ 2207 (cos K+ cos )]y’

+ Py p(e 2k 4 1)¢2<k,l G 1)¢2>k,|,

(72

and
¢2>k,| - iveZins;k,l + V(eZik+2iI + 1) d’;’Iy (73)
¢2<k,l - 21)8_2" ¢i>k,l + V(GZik_Zil + 1)¢I2(,I, (74)

which then leads tgupon solving for¢™ (<) in terms of ¢)

Skl _ Kl 1+ e2ik+2i| + 20(82“ + e2”<)
¢2 - Vd)z 1 _2202 ,

(75
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kl1_|_e2|k 2il +2v(e 2il +e2|k)

_d)z =

¢! (76)

It is then straightforward to calculate the following combina-

tion:
(1 +@2k20) =kl g (1 4 graikedily g=kd
= (1-Po?) Lugh{(1 +e72k20) (1 + P2l
+20(1 + e 2k20) (e + g2k)

+(1+e 2|k+2||)(1+e2|k 2|I)+ZU(1+e—2|k+2|l)

><(e 2il + e2|k)}
4v gy i
= —55l1+cos Xcos 2 +Zz(cos X+ cos 2)].
1-7
(77)
Substituting back into Eq.72), we obtain
Gy = 1+ A2y =0), (78)
where
Gt =1 -%02- 22v%(cos X+ cos 2)
4P
1+cos X cos 2
1 7v? [
+zv(cos X+ cos 2)]. (79

The expression in Eq79) indicates that botlv andzv 2

are dimensionless. For convenience, we introduce the fol-

lowing dimensionless parameters:

=,
A= AR?
w=v?v. (80)

Note that it is always th&=0 limit we need; we therefore
can simplify the calculation by setting=0 first. To lighten
the notation, we only retain the variaUIeThus,gb‘i‘:O‘ be-
comes¢' and ¢'§(y=0) becomesp(y=0). Upon settingk=0,
Eq. (79) reads

1+z
Gl= {1 -2~ 22w1—_z(1 +cos 2)}

1+z
:1—[(1 2)% - 2zw - 22w cos 2].

(81)
Therefore, we have

(1-2)[1+AZ¢(y=0)]
(1+2)[(1-2?-2zw - 2zw cos 2]

¢ = (82)

We now employ the following identities:

PHYSICAL REVIEW E 69, 061904(2004)

1(™ -
qbg(y:O):—f Sy €20l (83
TJ0
o —fﬂ%; if a2>b%.  (84)
Ja2-p2 J, 2ma-bcosé '

Note that if we assuma=(1-2)2-2zw andb=2zw, we im-
mediately seea?-b’=(1-2)*-4zw(1-2)?>=(1-2)q(1-2)?
—4zw]>0. The reason is thdtl —z)°—4zw>0. This can be
seen by checking whether Z-is greater than 2zw or not.
Equivalently, we are asking WhetheZ(\'Zv+2V)< 1is true.
Sincez=<1 andv+2v<1, we see that is always true. Con-
sequently, we have

1 +AZH(y =0)
Hy=0= (1+2V(1-22- 420 89
or equivalently
1
p(y=0)= (86)

(1+2V(1-22 - 420 - A2

Eqg. (86) can then be substituted into E@2) to obtain the
complete expression fap'.

The expression fopy™ (<) also simplifies greatly when we
setk=0. For example, we now have

v

' = -5 +e?), (87)

<l — v
o 1-2

——(1+e 2, (88)

With the relations found above, it is now a good time to
write down explicitly the quantit;(\/\/f)o we need to calcu-

late,
dZ 1+ZU . 0 ¢>|:0+ ¢<|:0
Wo=§ ) g v —
m| Z a
A@}. (89)

When A=0, i.e., no randomness, we expect to see ﬁdat
=(Wp)o and (W2)=(Wpo2. Therefore, whemA=0 and 2
+v=1, we expect the expressigd9) to be simplified to

dz 1 1

2m #11-3
This disorder-free limit in fact can be verified in a straight-
forward manner.

WhenA # 0, we need to make sure thaty=0) does not
have anyz pole such thafz| <1 (or |z <v) to guarantee that
(W2 __yo=const. Furthermorep(y=0) should have a pole at
z=1 (or |z=v) under the condition 2+v<1. To better vi-
sualize when this will happen, let us look at the expression
d(y=0)=1/[(1+2)\(1-2)?>-4zw—AZ?]. There are two parts
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10” AM120 averaged, normalized restricted partition function
o 120
_ X1, X2, v Xpol
10 lim D(X1,%o ) 91)
t—o 2 ¢(X1,X2, e ,XR,t)
@ 10_2 X1, %25+ - XR
& gives the probability density of finding replicat positionx;
o 107 for all i=1,2,...R The Laplace transformed quantity
d5(X1,X%o, ... Xg) is nothing but
107" " =
: ‘ ‘ ‘ ‘ R W 2 ¢2(X11X21 e !XR) = E Zt<\A,$>O'
4 6 8 10 12 14 X MR =0

o By gradually increasing the value &f from 0, the above
quantity increases; wherrZ,, the above quantity diverges.

FIG. 4. The normalized histogram and the Gumbel fit under the_l_hiS suggests that we can write the expression in(&t). as
condition(90) at 7=1. The alignment scores were obtained by first 99 P )

generating sequence pairs according to probability distriby86n & (X, X Xg)

. . . . . Z0 s A2y e ey
and then aligning each sequence pair according to the algorithm .
described by Eqg23) and(43). The relations between the scoring E ¢>20(X1,X21 coe XR)
function and the substitution weight and linear gap weight are sum- X1, X, - - XR

marized in Eqs(46) and (47) with the chemical potential “o P
chosen to satisfy the solvability conditiq@0). Each random se- Actually, the quantityz, is closely related to the ground state

gquence generated has lengih=600. The circles represent the energy of theR-replica system. It has l_)een used to calculate
alignment score histogram of 500 000 random sequence pairs usitf€ 9round state energy of a few-replica DPRM sys8in
the PAM120 scoring matrix and linear gap cest4.5. The solid In general, the disorder average results in an attractive
line corresponds to a fit to the Gumbel forf89) with A=2.0 as potential among the replicdg]. Therefore, one can write the
expected, together with the other fitted parametek#in(KN?) ~ disorder-average®-replica partition function agg]

=12.4. The error bar associated with is about 0.02, i.e.\ ~ _FO AT R
=2+0.02 from the fitting. (W) = e RV W) oR,

with the ground state energy of tliereplica given by[8]

in the denominator. Let us call the expressiqi
ER= I|m[t_l.7:R(t)]
t—oo

+2)/(1-2)2-4zw the first part and Az? the second part.
Note that both the first part and the second part have a nega-
tive derivative with respect ta for >0 and 0<z<vp<1. This relation connects the Laplace variajend the ground
Furthermore, wherz=0, the first expression takes the value State energy oR-replica system

1 while the second expression takes the value 0. Thus, the ~

whole denominator ofb(y=0) is a decreasing function af E.= T{ R(Iim |n<VVt>O) +In3 ]
with value 1 whenz=0. If we have the denominator set to R toe t

zero atz=v, then the denominator will stay positive while

0<z<y. This implies the following choice: Another way to viewEg is to look at its continuous time
counterpart. Basically, one may write down a time evolution
(L+u)V(1 -v)?>- 47 =A. (90) equation fore(xq,x,, ... Xg,t), and the lowest eigenvalue of

the time evolution operator is analogous to &grhere.

For a two replica system, it is of interest to investigate
how the probability density decays with the two replicas’
relative distanceg. That is, we consider the quantity

This condition basically constrains the magnitude\ab be
smaller than(1+v)(1-v)=1-v? It is obvious from Eq(90)
that the special casev2v =1 will lead toA=0.

Condition (90) is tested by an extensive numerical simu-

lation at7=1 using the PAM120 scoring matrix of the PAM ¢k:°( 1) ¢'f=°(y)
series substitution matrice®@5] and a linear gap cost lim k:OI:yO, = iimzo-
=4.5. Figure 4 shows the normalized score histogram ob- toe () d’zo '

tained from aligning half a million pairs of random se- k=0 .
quences of lengttN=600 along with a fit of the Gumbel  1he quantityg; (y) can be computed by the inverse Fou-

form (39). The tail is given by the paramete=2.0+0.02 as  fier transform of Eq(65), i.e.,
expected from 24=2/1=2. ” dl
¢z (y) = J ¢z e —, (92)

C. Two-replica bound state ’ o m

In the context of the regulaR-replica DPRM problem, Furthermore, since ' =°

S _ A DF 5 is independent oy andl, we can
the partition function of a DP of lengthis simply our pre-  simply divide both the left-hand side and right-hand side of
vious definition of W,. In a similar fashion, the disorder- Eg.(92) by ¢§;0"=° to achieve
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k=0 x 4k=0l
¢I2<——O(I)—/2) = %e—znyﬂ_ (93)
" s
Using the above expression, H§6) and(82), we obtain
P5y) (7 [A-2%-4z20]e®Y  dl
00 o (1-2)? - 220 - 2200 cOg2l) 7
27 46 1-2)%-4zwle™V?
[0 me g,
o 2m(1-2°-2zw~-2zw cos o

Becausey takes integer value, it is easy to see that the final

expression in Eq.94) is an even function of. Therefore one

PHYSICAL REVIEW E 69, 061904(2004)

IV. AFFINE GAP CASE

The algebra in this case becomes much more involved.
However, we can exploit our experience from solving the
linear gap case to make this tedious procedure more trac-
table. Similarly to the linear gap cagd6) and (47), the
“chemical potential,” w, is introduced via

U(ama bn) i ex;{(s(am, bn) + 20’))/7‘,
v—exg(-e+o)l7],

u— exd (- o+ o)lt]. (97)

may assumg >0 and proceed without loss of generality. Let | ot s now rewrite the recursion relatigB0) in the (x,t)

us introduce the complex variabte pe'? together with the
short notationsa=(1-2)°-2zw and b=2zw, we rewrite the
last expression of Eq94) as

tg gt ab _1g dt a-h
27iY Wty b Tomd Ry p
a—z(t+ 1h) ta—z(t +1)

Note that forZ in range of interest &2<Z2, we have
a>b>0. Aside fromb>0 by definition, we sea>b from

Eq. (86) where we have/a—b being real and positive in the
range of interest &z<2, The integrand, aside from the

pole at the origin(when y=1), has two poles at;=(a
+va?-b?)/b andt,=(a-va?-b?)/b. Note that 0<t,< 1 and
t;>1. Since we are mainly interested in the laggbmit to

find the decay length, it is most direct to deform the contour

of integration to a large circle witt| — . By doing this, we
need to deform the contour around thepole and the inte-
gral becomes;¥(2/b)(b/2\a?-b?) =g AINW/2l} (a2 - p2,

Therefore the decay lengthy is given by 2/Ift;(2)]
with Z, given by setting the denominator of E&6) to zero.
More explicitly, the decay length is given by

~ [ ~ 2 ~ 2 -1

1-zpw+ V(1 - -4

{m Zv +\( AZOU) zcv} ’ (95)
2\Nzyv

with Z, satisfying

1+Zp
for given v=e",
:<e—2u(x,t)/r >0—02.

V(1 -20)% - 4zr2=A (96)

v=(eUxV/7y . and variance A

coordinate system. We have introduced here one new param-
eter u”, which was set to zero in Eq30), to allow for a
directed path running along the vertical direction to turn to
the horizontal direction without moving along the diagonal
direction first(see Fig. 2. We therefore have

WE(x,t + 1) = o (x, IWS(X,t = 1) + uPWP(x,t - 1)
+ W (Xt - 1)],

WP(x,t+ 1) = udWS(x — 1,t) + WP (x - 1,)
+ uy u pAWH(x = 11),

W t+ 1) = WS (x + 1,t) + sWH(x + 1,1)

+ o uPWP(x + 1.1), (99
with the initial condition given by W(x,t=0)=46,,,
WPM(x,t=0)=0, andWSP-)(x,t<0)=0. Note that the con-
dition x>V u2V= 4, with  being the gap opening weight,
still holds true even when the extra parametéris intro-
duced.

As we have shown earlig21], probability conservation
(good for the one replica solutiprieads to the following
equations which the weight parameters have to satisfy simul-

taneously:

XY+ us +usr=1,
o)+ v+ up 'y =1, (99)

pE(X )0+ v+ ubp' uf = 1.

Our analysis here provides the two-replica bound state ' N ' _ _
characteristics. These characteristics can form the bases ®he interpretation of these conditions is exceedingly simple.

useful approximations when solving the geneRateplica

Basically, each of these equations constrains the weight flow

problem or even shed light on its exact solution. Howeverout of eachWSP) to be the same as what flows into each of
we will not delve into more details here since the main goalthose modegsubstitutions, deletions, and insertipngor a

of this paper is to provide the details of the second solvablénore general purpose, however, we will set the right-hand
class. After our short exposition of the two replica boundsides of Eqs(99) to be a constank with the understanding
state here, and the detailed description for the linear gap cageat for the one replica solutior=1. Together with two

in Sec. Il A and 1l B, we now turn to the affine gap case other conditions,ug’

W=y that relate theuP"s, we can

whose solution can be more useful in terms of application iruniquely determine the relationships among all of the align-

biosequence alignments.

ment parameters using Eq99). The results are
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b M (k+p=v)2=(1-u)(1-u")u? into this known solutiorj21] here. Instead, we would like to
H1="p= i+ ' = v) , (100 focus more on the two replica solution to obtain the second
H2 solvable class.
2 , " 2 We start by writing down the quantity/Z in terms of the
uh= = (ktp-9)" A -p)d-pHp . (101  newly definedy variables.
m k(k+p' =) .
W(t)2= 2 [YS(xq,t) + CaYP(xq,t) + CY'(xq,1)]
o) = K[(k = )2 = w1 14?] (102 a2
v (k+pu—-v)2=-A-pu)1-u)u? X[YS(Xa,t) + CaYP(Xp,t) + CY' (%o, 1)]

In the application to the one replica solution, where
=1, Eq.(102 can be used?21] to obtain the valudv), and
thus the amount of shift in score needed. In the two replica
solution, however, we would like to make sure that the prob-
ability in the three possible states are depleted by the same
amount. As we will show later, the condition analogous to
Eq. (90) for the two replica system can be obtained and will
determine the value dv),. Therefore Eq(102) determines

the k value, which then determines tlm?((z'; values uniquely.
Before embarking on the solution, let us first clearly write

+ 2 [YS(xq,t) + CaYP(xy, 1) + C Y (%, 1)]

X1 X5
X0 (X5, 1) YS(X5,t — 1)
+ 2 v(x,HYSX;,t- 1)

X3 Xp
X[YS(X, 1) + CaYP(Xo,1) + CiY! (%o, 1)]
+ > v v ()Y, t = 1) YS(Xh,t = 1).

~ X1 Xp
down whatW, is: (106)
W, = > WX, 1) + > WS(X t+ 1). (109  BecauseYP!(x,t) can be expressed as linear combinations
X o of YSP at timet-1, the only unequal time piece comes

from YS(x,t)YS(x",t—1). Before embarking on the study of
As before,W(x,t) =W x,t) +WP(x,0) +W'(x,1), and ifxis  the time evolution of quantities such AYS(xq, 1) YS(x5, t
§ummed over even integers thenwill be summed over odd -1))o and (YS(x},t=1)YP(x,,1))o, let us define all the rel-
integers, and vice versa. evant quantities needed for future calculation.

For our analytical computation, we found another defini-
tion of auxiliary field more useful, namely,

YS(x,t) = WS(x,t) + YP(x,t) + Y'(x,t),
YP(x,t) = uPWP(x,1),

Y (x,t) = i WH(x,1). (104)

Interestingly, W8(x',t+1)=v(x,t)Y(x,t-1) and we can
write W(x,t)=YS(x,t)+CyYP(x,t)+ C;Y!(x,t) where the new
constant<Cy= (1/u)-1 andC;=(1/u})-1 are introduced
for convenience. Before discussing the details involved in
solving the affine gap case, let us write down first the itera-
tive Eq.(98) in terms of the new auxiliary quantities defined
in Eq. (104),

YS(x,t+1) =o(x,t)YS(x,t — 1) + YP(x,t + 1) + Y'(x,t + 1),

Yo(x,t+1) = wYS(x—1,) + (v— w)YP(x—1,1)
- w1 =Y (x=1,0),

Y (xt+1) = uYS(x+1,t)+(r—w)Y'(x+11)
(1= )YP(x+1). (105

B5 (X0, X, t) = (YS(xq + Lt + 1)YS(%p, 1)),
B55 (X0, %, t) = (YS(Xq, ) YS(X + 1t + 1)),
50, %,t) = (Y0x3, 1) Y%, ),
B°P0x1, %o,t) = (Y(x1, 1) YP (%2, 1),
¢%'(x1,%,8) = (Y3(x3, ) Y (%, 1)),
BPNxq, %o,t) = (YP(x1, ) Yz, 1),
#°P (X1, %0, 1) = (Y2 (x,) YO (%, 1),
B! (X1, %o,t) = (YP(x, DY (X2, 1)),
B'5(xq, %2, 1) = (Y (x3,0) Y30z, ))o,

B'° (xq,%o,t) = (Y (x1,) YP (%2, 1)),

#" (X3, %2,t) = (Y' (X, 1) Y (X2, 1)

Using the above recursion relations and the methods in Apparently, there is symmetry that we should spell out.
Sec. Il A, we can establish the one replica regfitst solv-  For example,¢PS(x;,%,,t) = ¢5(X,,%;,t). The consequence
able classmore mathematically. We will, however, not delve of this is that $°S(k,1)=¢5P(k,-1). Pairs exhibiting such
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symmetry include[¢%', ¢'%], E¢'D,¢D'], etc. In a similar  dient for making(W2), finite is to make sure thapy=0)

fashion to the definition of°* and ¢S, we find the fol-  has no pole with & |2|<1 and that it has a pole at exactly

lowing intermediate variables useful: z=1. Since in general the quanti#Z{y=0) can be written
'S0 1) = (Y20 + Lt + DY, D)o, =

Paly=0)= (108)

1
Goxg2) = AZ'
the aforementioned condition can be achieved by setting

Gexp H(2) = A7, = 0. (109

¢ (%, %o t) = (YS0x, DY (3o + Lt + 1)) To investigate how conditiofL09) can be satisfied, we need
) + + the explicit expression foB,,, which unfortunately is quite
As before, we see easily that™ (x, %, 1)= ¢ g, x,1). compliréated fcl)ar each case, But in general, it alwgys gontains
There are four§uch pairs above. Furthermore, such symmes ee components and the first component is always the
try implies ¢3° (k,1)=¢P S(k,~1). Therefore, in the final same. That is, we can write
Laplace-Fourier form, there ar€l1-3+(8-4)=12 inde- 1 ) 3
pendent variables to take care of. This number of variables is Gexp= Gexp* Gexpt Gexp (110
considerably larger than the linear gap case where only twQity
independent variables were needed. After introducing the rel-
evant variables, the next step is to write down their corre-
sponding evolution equations, and then perform the discrete
Laplace and Fourier transforms analogous to those in Eq.
(63)«(65). Although the framework so far is quite general, e now document the three casgs'=1,u"=1), (1’
we will focus mainly on three scenarios in our analytical =0,4"=0), and(x'=1,u"=0) separately.
effort, i.e.,u' =u"=1, u' =u"=0, andu’=1,u"=0. The first
two cases are symmetric, while the last one is asymmetric. A . p/=land p'=1
Experience from solving the linear gap case tells us that
the most important quantity to consider & Yy=0), which

657 (X3, %0,1) = (YS(x, ) YO (o + L,t + 1)),

B'"S0xg, %0, 1) = (Y (% + Lt + 1)YS0x,1) o,

0[2

Géxp: m. (111

In this case, we have

is nothing but taking/=0 in the expression G2 = (1 - a?pB2)%? (112
- P (1 +a-az2D(2)\FYD)'
> Sx 2ye_ik(xl+)(2)/2 > 25, %o, ) |
1752 = —_—
= s __ 2a[1-a(l+a)pZ\Ni2) (113
Because of the extensive algebra involved in the derivation, exp (1+a+az)D¥(2)\ gl(Z)ng(Z)’
we will only document the key results from the three cases
(e, p'=p'=1, u' =p"=0, andu’ =1,u"=0) where this im- ~ With
portant_ quantity¢is_s(y=(_)) is calculateq. The detailed proce- DX(2) = (1 +a) +[1 - 3a28- a®B-2a(1 + B)]z
dure will be described in the appendixes where the evolution 5 5
equations, their general developments, and the specialized +a(l+af+20°B)7 - a®B2, (114

cases of interest will be documented.
As before, the variance of the random potential is defined F 5(z) = 1 -[2 + (2 + @)?B]z+[1 + 2a(2 + @) B8]2* - &?BZ,
to beA, i.e., (115)

X Du(X' 1)) —v?= A X Ot
_ . * N2 =1-a(2+a)fz- B2+, (110
Before documenting the main results for the three cases, let

us first define a few notations similar to these in Ef) Fa2)=1+[1-a2+a)Blz- 282, (117)
=,
Fi(2=1+z- a2 +a)BZ - *BZ. (119
a=-wly, Figure §a) demonstrates our numerical test of the above
analytical result. The histogram presented is obtained from
B=ull, aligning uncorrelated random sequence pairs using the
PAM120 matrix [25] with the so-called(11,1) affine gap
A=A2, (107) cost at temperature=1. As expected, the resulting is \

=2/7=2. See figure caption for more details.
wherezZ is the variable introduced for the discrete Laplace Although the algebra needed to arrive at this result is
transform. As discussed in the linear gap case, the key ingre&somplicated, this nevertheless is the case where we can take
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10’ = - ‘ the linear gap limit. In the linear gap limit, we haye=v,
e °© PM120 and thusa=0. Upon settinga=0 and B=w, we find that
. — A= 1 _~3 _—
107 =20 | Giy=Gip=0 and
-2
g 107 - 1 5 1
&, G..,=G%, = .
= 0T (1421 - 2 dwz+ 2
a 10> | J
10 . | This is consistent with the former expressi@6) for the
5 linear gap case.
10° L J
4 6 8 o 10 12 14 B. u'=0 and w'=0
10° In this case, we have
> PM120
107 - — =20 | 2 _ [1-(1+ a’)Z,BZ]?’/Z 119
P (1+a-az2DP2)\VFS(2)
-2
& 10 :
E -3 2 INIP
T 10° - | 2 _Zdar(-al+rafpdiNED o
- P (1+a+az)DVF(2FL2)
10° = with
4 6 8 10 12 14
@ D2 =(1+a)+[1-2a-(1+a)’Blz
10° T : , +[a=(1+@)*3-20)B1Z + (1 - P)apZ’,
HA o PM120
. (121
107 L A=2.0
10" ¢ 1 F2=1-[2+(1+a)?Blz+[1-21-a)B]7
L
2 g ] -(1-a)’BZ, (122
-4
0 ’ N3@)=1-(1+a)?pz- (1+a)?B7~ (1~ a)(1+a) B2,
— ° (123

b (o) _ _ 2 _ 2
FIG. 5. The histograms and the Gumbel fits using the conditions Fau@=1+[1-1+a)Blz+(1-a )'822' (124

(109 at 7=1 for three cases studied analytically. The alignment

scores were obtained by first generating sequence pairs according to b _ > >

probability distribution(36) and then aligning each sequence pair Fad=1+z+(1-« ):822_ (1-a) 523- (129
according to the algorithm described by E¢34), (35), and (43).

The relations between the scoring function and the substitutiorFigure %b) demonstrates our numerical test of the above
weight and gap weights are summarized in @J) with the chemi-  analytical result. The histogram presented is obtained from
cal potential “v” chosen to satisfy the solvability conditiad09.  aligning uncorrelated random sequence pairs using the
Each random sequence generated has leNgtB00. The circles  pAM120 matrix [25] with the so-called(11,1) affine gap
represent the alignment score histogram of 500 000 random S&ost at temperature=1. As expected, the resulting is A

quence pairs using the PAM120 scoring matrix &htl1) affine gap =2/7=2. See figure caption for more details.
costs, i.e.,6=12 ande=1. The numerical fitting of the normalized

histogram(pdf) results in\=2.0+0.02 as expected. The solid lines

correspond to fits to the Gumbel for@9) with A=2.0, together C.p'=1land u"=0
with the other fitted parameter le=In(KN?). For case(a), where o ) S
w'=p"=1, IKN?) is found to be 12.55 from fitting; for cage), This is the case that was adopted in the hybrid alignment

whereu'=u"=0, INKN?) is found to be 12.5 from fitting; for case Method[21]. The purpose of having”=0 is to avoid over-
(c), where u'=1 and x”=0, In(KN?) is found to be 12.52 from counting of equivalent gapping in alignment. In this case, we
fitting. have
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) [1-a(1+a)Bz? affine gapcase(Sec. V). Similarly to the first solvable class

exp ™ (1+a-az)D%2) \/Fc(z) , (126) case, the condition that allows for the existence of the second
2 solvable class imposes an equati@olvability condition

relating different alignment parameters. By introducing the

5 2a[1-a(1+a)BZIN$(2) “chemical potential,” o;;)(7, ), to satisfy the solvability
exp ™ (1+a+ aZ)DC(Z)V/ gl(z)ng(z)ng(z)' 7 condition, we find two different hypersurfaces in phase space
for the two solvable classes. Within the first solvable class
with the extremal parameter=1/7, while in the second solvable
classn=2/7.
D{2)=(1+a)+[1-2a-(1+a)’B]z When using this prediction, however, some caution is nec-

+a[l-(1+a)(1-20)B12- B8, (129 essary. Basically, the predicted statistics from the two solv-
able classes agree well with numerical studies for most fre-
quently used scoring functions and for moderate
FS@2=1-1+(1+a)?Blz+[1+B(-2+4a(1+a) temperatures. When the temperature used is very high, the
4 > 2 4.0 hypersurfaces from solvable classes are very close to the
+(1+a)'p)le-20°f1+ (1+a)°Bl2+ B2, phase transition hypersurface, because the local alignment
(129 characteristica=1/7 ( or 2/7)— 0. In this case, the highest
scoring configuration tends to have its Boltzmann weight
Clpy =1 20 _ 3 2 contributed from lots of paths of length comparable to the
N§2=1-(1+a)hz- all + @)z + a¥1+ )7, system size. In other words, the system easily runs into the
(130 “critical region” and one therefore needs a much larger sys-
tem size to recover the local alignment characteristics.
F$(2)=1-a?82Z, (131) When tempgrature is very_ I_ow, the_ guantityrlzz)(r, )
needed to achieve the solvability condition tends to be close
to the largest entry of the scoring matrix. This means that
F (2 =1+[1-(1+a)?Blz- a?BZ, (132 only very fewcharacter pairs out of all possible character
pairs can have substitution weight épgia,b)—20]/7]
greater than one. Note that this is similar to usstg,b)
—20 as the effective substitution score in the optimal se-
-a?Bl1-(1+a)’Bl2+a*FZ. (133 guence alignment. Therefore, when the system size is not
Figure 5c) demonstrates our numerical test of the above@'9€ e€nough, the highest score path will contain only a very
analytical result. The histogram presented is obtained fronsMall number of character pairs but each with substantial
aligning uncorrelated random sequence pairs using th&ubstitution weight. Because this scenario precludes the ap-
PAM120 matrix [25] with the so-called(11,1) affine gap Plication of the law of large numbers, our method of using

cost at temperature=1. As expected, the resultingis A global alignment to predict local alignment statistics is not
=2/7=2. See figure caption for more details. applicable to moderate system size when the temperature is

too low.
Although there are finite size problems at both high tem-

In this paper we give a self-contained introduction to thePerature and low temperature, these finite size problem can
sequence alignment problem and its connection to théh principle be resolved if one is willing to perform the simu-
DPRM problem. This introduction by no means can be redations on a much larger system, which of course can be very
garded as a review of the subject. For a more detailed expdime consuming. The agreement, between numerically ob-
sition of this subject, readers are referred to R&B] and tained and theoretically predictedvalues for generic cases
references therein. We have also provided the connection bénot belonging to the solvable claszedoes lend support to
tween the linear gap cost case of sequence alignment and thar solvability conditions even at the extreme temperature
DPRM problem. In particular, we provide the connectioncases in which direct numerical verifications becomes diffi-
between the alignment score statistics and the evaluation @{)|t (ﬁnite size effec)‘_ In the future, we p|an to combine the
the few-replica partition function of the DPRM system via two solvable classes to explore the potential use of the cool-
Eq. (45). The main results that are related to the alignmening map [24] in both uniform scoring schemes as well as
score statistics application include EC{§.O), (109)—(113), position_speciﬁc Scoring schemes.

(119, (120), (126), and(127). Equation(59) and the remarks
around it can also be of important use in the study of granu-
lar systems. ACKNOWLEDGMENTS

We explained here two solvable classes. The result ob-
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F 2= 1+[1-(1+a)%lz- 2a(2 + ) 7

V. SUMMARY AND OUTLOOK
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APPENDIX A: GENERAL DEVELOPMENT OF THE reiterate the definitioni55) of the varianceA of the disorder
EVOLUTION EQUATIONS potential, i.e.,

"t —v2= ’ I
In this appendix, we provide the details of how to obtain WU, 1)) =07 = Ad &y (A1)

the iterative equations of the auxiliary quanEties before speywe now present the iterative equations of those fifteen quan-
cializing to the three cases. Before calculat{mf)(,, we first  tities defined above. We will do them strictly in order.

¢ 0%, Yo t+ 1) = (YS(xq + L+ 2 YS(xp, L+ 1))
:v¢ss+(xl + 11X2 - l7t) + ¢D+S(X11X21t + 1) + ¢I +S(X11X21t + 1)1 (AZ)

% (1%, U+ 1) = (Y30, t+ DY + 1t +2))g
:U¢S +S(Xl - 11X2 + 11t) + (ﬁSD“'(XlIXZt + 1) + ¢SI +(X11X2!t + 1)1 (AS)

B3, X, t+ 1) = (Y3(xq, t+ )Y, t + 1)>o:%[<[U(X1,t)YS(X1,t =D +YP(xg, t+ 1) + Y (x, t+ D]Yxp,t + 1))
+ YS(xq,t + Do (X, ) Y0, t = 1) + YO (X, t + 1) + Y (X, t + 1) o]
=20 (%, ) YS(Xg, t = DYt + 1) + YS(x, t + 1o (Xe, 1) Y00, t — 1))

+ %[quS(Xl!XZ!t + 1) + d)SD(Xl!XZ!t + 1) + ¢IS(X1!X2!t + 1) + ¢S|(X1!X21t + 1)]
:%<Ys(xl,t = DYP (Xt + 1) + Y (X, t + )]+ [YP(Xg, t + 1) + Y!(xp, t + D)TYS(X,t = 1))

+ (Uz + A5X1,X2)¢S%Xlax2!t - 1)+ %[(bDS(Xl!XZ!t + 1) + ¢SD(X11X21t + 1) + ¢IS(Xl!XZ!t + 1) + ¢S|(X11X21t + 1)]

=3[P 0xg, Xa t + 1) + 50, X, 1+ 1) + 150xg, X, U+ 1) + ¢ (xq, Xp,t + D]+ (02 + A8, 5 ) %Xy, X, — 1)

1X2

- g{ﬂ[sﬁSS*(xl,xZ =2t 1)+ ¢55 (xg, Xt = 1) + ¢S S(xg — 2,%0,t = 1) + 5 Axq, Xp,t = D]+ (v p0)

X[ (a0~ 2t = 1) + 6% (0t = 1)+ 67 N0 = 20t = 1) + ¢ S0, 30t = D] pul L= )
X[9™ (=28 =1) + ¢ %04 = 2.t = D= (1 = )% (e Xt = ) + 6P St = DI, (A4)

3P(Xq, X, t + 1) = (YS(xq,t + 1)YP (3o, + 1))g
=([o(X, DY(Xg, t = 1) + YP(xg, t+ 1) + Y (xp, t + 1)TYP (%o, t + 1))
=0(Y(xq,t = DYPO,t+ 1))g + PP(xg, Xpt + 1) + P (x, %0, t + 1)
=0[ % (x, %o = 2,8 = 1) + (= 1) %0 (xq, %o = 2,6 = 1) = (L = ") % (x4, % = 2,8 = D]+ PP(xy, X5, L + 1)
+ PP (xy, %o, t + 1), (A5)

BP3(Xq, X, t + 1) = (YP(xy, t + 1) YS(xp,t + 1))g
=(YP(Xq,t + D[v (X, 1) Y3(Xo,t = 1) + YO (Xp, t + 1) + Y (%o, t + 1) ])o
=o(YP(xg,t+ )Yt = 1))o + PP(xg, Xp,t + 1) + ¢ (x3, %0, + 1)
=0l ™ S0 = 20,8 = 1) + (= 1) #° 501 = 2%, = 1) = (1 = ") 5%y = 2%, = D]+ GPP(xq, Xp, 1 + 1)
+ PP Xy, X, t + 1), (AB)

B2 (g, %0, + 1) = (YS0x, t+ DYP(x, + Lt +2))g
:<YS(Xl!t + 1)[/'LYS(X2!t + 1) + (V - ,LL)YD(Xz,t + 1) - M(l - IU/H)YI(Xth + 1)]>0
= X, Xo t+ 1) + (1= 1) 60Xy, X, t + 1) = (1 = ") !Xy, %o, + 1), (A7)
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AP S(xy, Yot + 1) = (YP(Xg + Lt + 2)YS(Xo t + 1))
:<[/-LYS(let + 1) + (V - M)YD(X].Yt + 1) - /1/(1 - M,,)YI(Xl!t + 1)]YS(X2!t + 1)>0
zlu’d)S%Xl!XZ!t + 1) + (V - IL'L) ¢DS(X1!X2!t + 1) - M(l - /-L”) ¢IS(X11X2!t + 1)1 (A8)

3 (Xq, X, t + 1) = (YS(xq,t+ DY (Xp, t + 1))
:<[U(X1!t)YS(X1!t - 1) + YD(let + 1) + YI (Xl!t + 1)]YI (XZ!t + 1)>0
=0(Y3X,t = DY (X, t + D))o+ dP Xy, Xo,t + 1) + ! (Xg, X, + 1)
=0[ 1% (X4, %, t = 1) + (= 1) " (X0, %t = 1) = (L = ) 5% (%0, %0, = DT+ 2 (31, %5, + 1)
+ d)” (X11X21t + 1)! (Ag)

B'S(Xg, X, t+ 1) = (Y (xq, t + DY, t + 1))g
=Y (xq,t+ D[v(2, ) Y%, = 1) + YP (3, t + 1) + Y (3, t + 1)])g
=Y (Xt + DYt = D)o+ ¢ (X1, X0t + 1) + ' (xq,Xp,t + 1)
=0l S Sxg Yo t = 1) + (v = W' g Xt = 1) = (L = 1) B2 (X, %ot = DT+ F (g, %0, L + 1)
+ ¢ () X0, + 1), (A10)

5 (g Xt + 1) = (YS(xq, t+ DY (o + 1t + 2))g
=IU,¢S%X1,X2 + 21t + 1) + (V_ M)¢SI(X1’X2 + th + 1) - /1/(1 _IU/,)Q')SD(XLXZ + th + 1)’ (All)

B S(xq Xo,t + 1) = (Y (xg + Lt + 2)YS0xp,t + D)o
=Xy + 2%, t+ 1) + (0= ) Xy + 2%, t+ 1) = (1 = ") pP(xg + 2%, + 1), (A12)

PP (Xq X, + 1) = (YP(xg,t + D YP(xp,t + 1))g
=Y = 1) + (= w)YP(x = 1,1 = (1 = ") Y (% — 1,0)]
XY= 1) + (= ) YP (X = 1,t) = u(1 = )Y (%2 = L,H1)o
=pp% T~ Lo = L1 + (1= w2 (% = Lo = L,O] + (v = w)?@ P (%~ Lo = L,1)
+ u(v= w0 — 1= 1,b) + ¢P5(x — 1xo = 1,)]
—u(v=mw(1=p P =L x= 1,0 + P (X, = L, = 1,1)]
- 121w~ 1= 10 + ¢%xa — 1%, - 10)], (A13)

B (X0, %0, t + 1) = (Y (xg, t + DY' (Xt + 1))g
=([Y30x + 1) + (= w)Y' (X + 1,t) = (1 = ") YO (xq + 1,1)]
XY+ 1t + (= )Y (o + 1) = (1 = ) YP (3o + 1,H)])o
=pL %+ Lo+ 10 + (1= )2 (xy + Lo + 1O+ (v = )% (% + Lxo + Lt
+ (v = W% (x + Lo+ 1t + ¢'5(x + 1x, + 1,1)]
—u(v=w(@=p )PP+ L X+ 1) + P (X + L X + 1,1)]
= w21 - [P0 + Lxo + Lt + P50 + 1x + 1Y), (A14)

P (X X, t+ 1) = (Y (xg, t + 1) YP(xp,t + 1))
=YX + 1,0+ (v = wY' (X + 1,0 = (1 = ) YP(xq + 1,1)]
X[uYS(x = 1,0 + (v = w)YP (%= 1) = (1 = )Y (%= 1,010
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=P+ 1o = L) + (v = w)? P (g + Lo = Lt + (1 = ) (L= ") P (Xg + Lxp = 1,1)
+ u(v= w20 + 1o = 1t) + ¢S50 + 1.%5) = 1,t]
= A1)+ 1xo = 1t = (1= ') P50 + Lxo = 1,1)
= (=Wl =-p)d P+ L= 10 + (1= ") " (X, + Lxo = LD)], (A15)

P (X, X, t + 1) = (YP(xg, t+ 1) Y! (%, + 1))g
=Y = 1) + (= w)YP(x, = 1) = (L = )Y (% — 1,1)]
XY+ 1)+ (r=wY O+ 1,t) = w1 = 1 )YP(xo + 1,H)])g
=pPdS 0 = Lo + 10 + (= )% (X = Lxo + L,t) + p?(1 = ' )(1 = ") P (% = LXp + 1,1)
+ (v = W% (xy = 1xo+ 1t + ¢PN(x = Ly + 1,1)]
= (1= )Xy = Lxo+ 1t) = w21 = ') ™0(xg = Lo + 1,1)

—u(v=wlQ-p)PPx = 1)+ 1) + (L= u") " (X, = Lxp + 1,0)]. (A16)
[
The. next step is to perform the _Laplace—Fourier transform: ¢SD+(X1,X2,t = 0) = (YS(x, 1= 0)YP (%o + 1, = 1))
Basically, we transformp(x,x,,t) into ¢s(k,l) with
::U'5x1,05x2,0v (A22)
#3(K,1)
@ DS =0) = (YD = 1)YS -
= e X 5 2ye'"‘(xl+X2)’2[E 2‘¢(X1,X2,t)] . 7 Xt =0 = (0 + L= DY e = 0k
y Xq,%p 1z t=0 :ﬂisxl,o(sxz,oy (A23)
(A17)

S — —/VS — S — —

The final goal is to express als(k,!) in terms of the free P70t =0) = (Y0, 1= 0¥z, = 0)0 = 3y 090
case(i.e., A=0) and something we can calculate analytically. (A24)
To th|s.end, we shall work on each mdmdual equation sepa- e et of the guantities have their initial values equal to
rately fII‘S.t. We also would I|k¢ to remmd. the readers of thezero. With these initial conditions given, one can now start
S¥£n met”eg, that - we menUo_ned earlier. For exampley,, Laplace-Fourier transform. Even though there are seven
¢5 (k,N=¢5 (k'_lo)c' In performing the Laplace transform g ,aniities having nonzero initial values, it turns out that the
step, ¢5(X1, X2) = ZiZob(X1, X2, 1)Z, We have to pay attention to majority of them do not play much role after the Laplace
the following initial conditions: transform. To see explicitly, we will go through a couple of

s s Cus _ those transforms. Using the first recursion relation, we have
@ (X, %o, 1= 0) = (Y3(xy + L= 1) Y%, t = 0))g

=([YPOq + 1t=1) + Y(x + 1t = 118 oo b5 Sx,%0) = ul 8 0+ Sy 2,080
=u[ 8 0+ 8 2150 (A18) = 20¢5% (X + 1% = D+ [0 Xx4, %) = 48y, 06, 0]
+ [y (x4, X0) = 18y +2,00,0)- (A25)

¢%% (x4, %, = 0) = (Y50, t= 0 YN0 + 1t = 1)
=<5Xl’0[YD(X2+ 1t=1)+ Y+ 1t= 1], With all the initial values canceling each other, we then have

=6y ol Ox,0F x, -2l (A19) 5 %0, %0) = 055 (xg + Lxo = 1) + 5 (x4, %)

+ + ¢|2 +S(X11X2)a
¢S| (XllXZ!t = O) = <YS(X11t = O)YI(X2 + 1,t = 1)>0

=18, 0%,42.0 (A20) ¢ Sk y) = 2055 (ky + 1) + 2 Sk y) + ) Sk,y),
@ S(Xg, X, t = 0) = (Y (Xg + 1.t = 1)YS(xp,t = 0))g SS(k,1) = 20e' g5 (k1) + 2 Sk 1) + L Sk D).
= 6y +2,00%,,0: (A21) (A26)
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A similar calculation on¢Ss+ then leads to
B35 (x1,%0) = 205 xg = 135+ 1) + 50 (34, %)
+ ¢QSI (X11X2)1
B5S(k1) = e 65 Sk 1) + 657 (K 1) + 5! (K D).
(A27)

Combining these two equations, we can expr¢§§(k,l)

and ¢$ S(k, ) in terms of other correlators. That is to say,

¢ (kD)
_ 2k + ¢ kD) + e [657 (k) + 65 (D]
- 1-7%?
%)
P (k) + 5 (k) + e[ Sk ) + Sk D)]
- 1-7%? '

(A28)

The major equation comes from thgS part which we
now turn to:

B %1, %) = O%,.00%,0F (v?+ Aéxl,xz)iz(ﬁQS%leXZ)

+ %[(ﬁiDS(Xl’XZ) + ¢ESD(X11X2) + ¢!ZS(X11X2)
+ 5 (%, %) I+ %{/ﬁz[qﬁisg(xl,xz -2

G55 (%, %) + 5 S0 = 2%0) + 65 S0, %0)]
+ (= W25 (%= D) + 65 (%, %)

+ 0"S0 = 2.) + B S0, %) ]~ (L - )
X ¢S [0, %0 = 2) + 6 S04 = 2%9)]

— uP(L = [ BS (X1, %) + B2 S04, %) I}
(A29)

After the Fourier transform, we then have
$5TK,1) = 1 +0%25 Tk 1) + AP ky = 0)
+ 32, + 50K, 1) + (K, + 45 (K )]

+ e 5 ) + 55 (k)

+ e S Sk 1) + ¢S (k)]
+ (= W2 ™M g (k1) + 65" (k1)
+ ek gD S 1) + gl "S(k )]

PHYSICAL REVIEW E 69, 061904(2004)

- (L= e g5 (kD) +e7 ¢l (k)]
+ (1= u) (PSP (k1) + D Sk, 1))} (A30)

We now continue with the rest:

#5%(xq,%) = U?[M@g(xbxz -2)+(v— ) ¢QSD+(X1vX2 -2
— (L= ) g5 (x4, %0 = 2)]

+ PP Xy, Xo) + By (X1, %),

B30k, 1) = ¢° (k1) + (K, 1)
+ 2 M ugSS (k1) + (v - 1) ¢5” (K1)
— (1= (kD] (A31)

and similarly

AP0 = PP (K1) + 2 (K1) + 0P I S (k1)

+ (=) 2 Sk, 1) — (1= )l S, D)1
(A32)

d’is D+(X1,X2) ~ 8y 06,0= ul ¢iss(xl'x2) - 5X1*°5X2’°]
+ (v = 1) 5 °(Xq, %)

- (1= @) 5 (%, %),

¢2SD+(X1,X2) = ,U~¢QS%X1,X2) +(v-p) ¢QSD(X1’X2)

- (L= ") 5 (%0, %),

B0 (k1) = Sk 1) + (0= ) ¢SOk 1) = (L = ) S, ),
(A33)

and similarly
by (X, Xp) = My, 00,0= Ml b5 X1, %) = 85,,0%,0]
+(v=pw ¢2DS(X1,X2)

- (1 = W) 5%, %),

01, %0) = 1S Txa, %) + (v = 1) 95031, %0)

- (L= ") (%, %), (A34)

82"k )) = ST + (= ) 825 ) - (L= ).

We now go for theSI combinations:
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S| _ DI Il 5 Ss ested in the case when the center of mass momehttiéh
Sk, 1) = b2 (k1) + ¢ (k1) + 02 weps> (K, . - .
2k =y (kD) + s (kD) + 02Ty (k1) we might as well sek=0 from this point on. We therefore
+(r=w S (k1) = m(L— ) SY (kD] will abbreviate ¢3X(k=0,1) by ¢*X. The new linear combi-
(A35) nations we will adopt are as follows:
) S): ¢S§+ ¢§S,
By (k1) = P (k) + B (k1) + 02 e (kD)
- " D Sn=¢% - %5,
(= KD = (L - ) e kD],
(A36) Dp: ¢SD++ ¢D+S,
5" (k1) = @[Sk + (v - ) Bk 1) Din= ¢ - 4",

- u(l- M/)qsiSD(k,I)], (A37) 1= gl ¢S A & +S,

b S(k,1) = € STk 1) + (v = ) (K, 1)
- (1 - )25k, D], (A38)

¢ (k) =28 g3k + (1= ) (k) = (1)
X(BS'(k 1) + (k)] + (v = w)?$2° (k1)
+ (v = w5k 1) + ¢k, 1)
= (=) (B2 (kD) + 5" (K D)T}, (A39)

By (k1) = 284 u STk 1) + (1 - )25 P(k,1) = (1 - )
X(dO(k,1) + 23k T+ (v = w)?h (k1)
+ (v = wleS'k 1) + (K, D)
— (L =p) (@ kD) + ¢ (kI (A40)

¢ (k1) = 2" {25k, + (v = w2 (k1)
+ 21 =) (1= ") 3 (kD + v = w)[ 65K, 1)
+ (kD] = 121 = ) (kD)
= p2(1 =)7K~ (v = )
X[(A-w)gP k) + (1 -wgh (kD] (A4D)

Sn

05" (k1) = 26 {p2pS Tk, 1) + (v = w22 (k1)
+ (1= ) (L= @) g (kD v = w1
+ 2k D] = 121 = ) (kD) and
= WAL= p) g5k ) - v = )
X[(A=p)gEPk ) + (1 -1 (kD] (A42)

In real calculations, it seems worthwhile to utilize linear
combinations of these variables instead of the ones defined
originally. Furthermore, since we ultimately are only inter-
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= gl ¢S|+ _ e—ild)l *s,
d)ﬁD: P+ ¢PS,
¢aD: ¢SD_ ¢DS,
d)gl: ¢S|+ ¢|S,
¢§q|= ¢S|_ ¢|S’

¢DI - eiI ¢DI + e—il ¢ID
p )

yP =gl P — el D,

From the definitions of**, we have

_ (1+2v cosl)Dy+ (cosl + zv)l, = i(l = ZvDyy)sin |
1-7%? '

_ (1 -2v cosl)Dy, + (cosl — )l —i(l,+ ZvDp)sin |
1-7%2 ’

Dp=2u¢>+ (v= W 3P - w(l - w5,
D= (v=wen’ = u(l - "),
lp= 2>+ (v =) ' = (1 - p') b5°,

Im=(v=wem— u(l—pu) o0,

+ +, . .
' + ¢! S=1,cosl —il,sinl,
S|t I*s— ; ;
¢> —¢ “=lycosl-il,sinl,

P+ ¢P =y D' cosl iy D sinl,
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¢P' = ¢® =y Dl cosl iy sinl.

We can also invert the relations and expré%%'))s in terms
of Dy, D, Iy, Im, @nd 5% Explicitly, we have

SD_ VT H S
= D,—-2
%= = = - D
(=) .
| -2 ,
N T AU N
SD VT o
= Dm
Sin (v=p?=p(1-p)(L-pu")
(1 -p") |
(v=w?-p2Ll-pH2-pH ™
Si_ m(l-p') S
- -2
B - @ - @y Do )
v s
| -2 ,
' (V-M)Z-/Lz(l—u’)(l-u”)( p= 2147
Sl M(l_,Uv’)
T (v= )= (1)1 - )
+ VTR

.
(v=w?=p2L-pH2-p) "
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¢P° = Hu ¢+ (1= w2 = (L= w) by ]+ (v = )*¢™°
+ u(v=wlep = (L-p") (g cosl =iy sin]},

B = A 55+ (1= w240 - (1= )57 + (v = o)
+u(v= 5= (1= )5 cosl =iy D sinD]},

Yo = 22pP ¢S+ [(v =+ pA (1 - p) (1 - w")]
X[y cosl =igp! sinl]+ u(v= w5 + 65°)
—pAL -y - WAL= ) B0
= 2u(v= w1 -u)¢"P+ (1 -u" "1},
Ui =Al(r=-w? - P21 - )1 - )Y cosl
=iy sinl]+ pol e — )+ il b= i b}
A common quantity that constantly appearsSscosl|

+iSy, sin | together withS,, cosl +iS; sinl. These two quan-
tities can be readily expressed in termsf, Dy, I, andl

S, cosl +iSy, sinl ={(cos| + zv)D,+ (1 + v cosl)l,

—izvly, sinl +iD,, sin1}/(1 - Z%v?),

S cosl +iS, sinl ={iD, sinl +izvl, sinl + (cosl - zv)D,
+(1-2v coshl (1 -Z%?).

One thing that jumps out is the combination§f+ S, cosl|

With these new definitions, we can rewrite the equationstiS;, sin| and §,+S, cos|+iS; sin|, which then give us
of interest in a slightly more compact fashion. For example,

we now write the following:

§95= 140245+ AP 5Ty =0+ S(40+

+ g%z{u[(l +cosl)S, +iSy, sin

-1 _M”)Ip_ (1 _,U«/)Dp] +(v- M)[(Dp+ Ip) cosl
+i(Dy= 1) sinl]},

Bp°=2¢PP + ¢ cos| — iy Disin | +vZ{[uS,
+(v— w)Dplcosl +i[uSy+ (v — w)Dplsin
— (1= u")lph,

SD_ DI i Dl i
m =~ ¢m cosl+iy g sinl

+vZ{[uSn+ (v = w)Dpy] cosl
+i[uS,+ (v— w)Dp] sinl — (1 - w")ly},

¢y =2¢" +y 2! cosl —iy ! sinl +vZA{uS,+ (v-p)
X[lp cosl =il sinl] - w(1 - w')Dp},

dm=wh cosl =iy sinl +vZXuS,+ (v = wly cosl
—ilpsinl]= (1 - u")Dy,

(1+cosl)S, +iSy, sinl =(1+2z)[(1 +cosl)(D,+1y)
+i(Dp— 1) sin11/(1 - Z20?),

(-1+cosl)S,+iSy sinl =(1-z)[(- 1 +cosl)(D,-1y)
+i(Dp+ 1) Sin11/(1 - Z20?),

(1+cosl)S,+iS, sinl =(1-2z)[(1+cosl)(Dy+ Iy
+i(Dp=1p) sinl]/(1 -7%?),

(=1+cosl)Sp+iS, sinl=(1+z)[(-1+cosl)(Dp— )
+i(Dp+ 1) sin11/(1 - Z2v?).

APPENDIX B: THE THREE SPECIALIZED CASES

In this appendix, we describe some more details of how to

obtain Eqs(108—110) for the three specialized cases.

1. Thep'=pu"=1 case
In this case, the equations can be greatly simplified

¢°5= 1 +0?P45+ AP Iy = 0) + 5(5°+ ¢5)
+ g%z{u[(l +cosl)S, +iSy,sin|]

+(v—w[(Dy+1p) cosl +i(Dy— 1) sinl ]},
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#P=2¢° + ¢ 2" cosl =iy Dl sinl +vZ{[uS,
+ (v = w)Dplcos| +i[uSy+ (v — w)Dylsinl},

-2 cosl + u// "sinl + vZ{[uSy+ (v — u)Dylcosl
+i[uS,+ (v — w)Dpsinl},

¢SD

bp'=24" + ¢ cosl — iy Rl sinl +vZ{uS, + (v - w)

X[l, cosl =il sin ]},

g =R cosl =iyl sinl +v2{uS,+ (v=w(ly, cosl
p Sinl]},

¢%° = P>+ (v = w)? PP + w(v— ) ),
B = 255+ (- )2 + (v - ) B3,

Uy =262uP¢%+ (v= Yy cosl -yl sinl]
+u(v- ,u)[¢§|+ ¢SD]},

Yo =A(v-wAyh cosl—iyf sinl]
- uv= e’ - ol

Furthermore, the relations betweg!Y* andD(1) ., are very
simple. In particular, we have

¢ DE—Z,LL

V=@

¢S|: _2M¢SS
p

|
Sl _ m
¢’m‘ .

Ve

We now note that if we cal\,=D,+1, andB,=D,~ 1, we
may simplify the calculat|on when solvmg fQﬁSS In fact,

upon using the new variables the equations do simplify and

we only need ¢DD+¢” ¢, and cod yp'~isinl )
=¢P', and cod ¢ -isinl y2'=
three fewer equations

¢P'. We end up having

PHYSICAL REVIEW E 69, 061904(2004

$55= 1 +v?2 ¢SS+ AP H5y = 0)
w2 }
2(1-)

s
¢SS
V-

{ 1

+ +

2(v-p)

_Zz{[ 22
1-2v

§7
Vo p

+ v}[A cosl +iB,, sin I]}

o fZAw 2(¢+ 3"

. b2y N
+UZZ{1/+ 2 }[Ap cosl +iBy, sinl],
1-zw

1 7
Bn=-24" - *--B
Vo u§ 1-

m

o v
+vzz[v+ K <

}[Bm cosl +iAy sinl],

d=A(v-p?’p+ ph, - 2243,
cosl @' +i sinl ¢ =2{(v = w)2¢® + u(A, - 2u¢®9},

cosl ¢P' +i sinl ¢P' = (v - w)2¢° - uB,y.

The first two equations actually imply

¢%5= 1 +v? 255+ AP ¢Sy = 0) + Ap—4

1
(v=p) ®
- - (B1)

From these equations, we see that the dimensiorns of
~1/v and the dimensions af~ u?, while x and v have the

same dimensions. We therefore find it more straightforward

to use the dimensionless coefficients defined in @.7).
After defining the lower case, andby, such thata,=A,/u
andb,,=B,/ u, we have

#9521+ K2 g5 245y =0) + Za, - 4= 4%5- = 3P,

1 1 BZ
Za. =4— SS+
P ad) 1

~ 1
a 1t Aet ¢D')+/322[01+ 1—_2}

X[a, cosl +iby, sinl],

DI _ BZZ
- 247 - by

+,822[a+ %—z][bm cosl| +ia, sinl],

b= B P+, 24°3,

cosl ¢°' +i sin| ¢

= BA %P + (a, - 2¢°9},
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BZ PP - b}
given by Eq.(111), we

cosl ¢ +i sinl ¢P' =

After a tedious calculation Wltlfi;exp

obtain
¢°5=[GL,+ G2+ G[1+A2¢%y=0)], (B2
where
G2= (1-a?B21-(1-2aB- a’B)z- o?BZ]
"~ (1+a-a2)D¥2)[H3,-H3 cosl] '
(B3)
5 2a(1-a(l+a)B2)(1+a’BZ)N5(2)
= 3 3 ., (B4)
(1+a+az)D¥(2)[Hg, - Hg, cosl]
whereD?(2) is given by Eq.(114) and
Hio=1-21+p)z+[1+(a+232a?BI7 - 2a+2)’BF

+ a2
Hsl =287 (a+ 1) - 2a(a + 1)z+ o?Z?],

H3,=1+(1-2aB- o?B)z— a(2 + a) B2 + 207 B°F
+a(a+2) B2 + o*(1 - 2aB - o?B) B2 - o832,

Hgl =2a[l+a+a[l-(a+1)?Blz- o(a+ 1) BE]BZ.

Using ¢°y=0)=(1/m)[§¢°l and integrating both sides of

Eq. (B2) over| from 0 to 7, we can then solve fopSYy

=0).

(115~118), to verify that

(H2)?= (1 - 2B2)F A2)[1 - (1 - 208 - o?B)z
- a2p7],

\//( Hgo)z -

VH3)? = (H3)2= \N§@F L(2F (21 + a?BD),
which then lead to Eqg108—(113).

2. The p'=u"=0 case

When u' =u"=0, the recursions still have tHe(l) sym-
metry which we will exploit. We have

-~ - S —
¢—( 2)(D 2ug>) + 2)' 2199,
SD_ v—p M
™ w(v-2u) viv-2u) ™
Sl _ _ S _ S
by ——V(V )(D 2pgy+——— )(l 219,
SI_ M V- H
™ y(v-2u) viv=2u) ™

It is straightforward, with notations defined in EQs.
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With these new definitions, we can rewrite the equations
of interest in a slightly more compact fashion. For example,
we now write the following:

$%5= 1 +0?P45+ AP Iy = 0)+ 5(5°+ ¢7)
+ %?{,u[(l +cosl)S, +iS,sin| =1, - D,]

+(v—w[(Dy+1p) cosl +i(Dy— Iy sinl]},

$50=2¢°° + 4! cosl =iy’ sinl
+vZ{[uS,+ (v— wDplcos! +i[uSy

+(v= )Dylsin | = pul g},

=— o cosl +iyD' sinl + 0[Sy + (v - w)Dylcos|
+i[uS+ (v = wDplsin| = ul ),

2¢"' + 0! cosl =iy p) sinl +vZ{uS, + (v w)
X[lpcosl =il psinl]— uD,},

by =

=y cosl =iy} sinl +vA{uS,

+(v—wllycosl —il sinl] - uDy},

¢ = {u [ ¢+ @' - g1+ (v = )PP
+u(v= ey = (¢ cosl =iy sin},

¢ = 2u ¢+ ¢P° - 71+ (v - )
+ u(v=wldy' - (g cosl -y sin)]},

Up' = 2212655+ [(v= w)* + w2l ' cosl =iy sinl]
+u(v=2m)y' + G5 1= 2u(v = w)[¢°° + ¢},

Yo =A(v=w?- @y cosl =iy sinl]
+ ulvdy - vl
We now note that if we calA,=D,+l, and B,=D,

-1, we may simplify the calculation when solving fg®S
Note that

+ 5= (D +1p— 4ug®,

SD_
m

1
m="(Dm=Im).
14

With the observation above, the equations do simplify when
we further introduce ¢>DD+¢” ¢, and cod zp

—isinl ¢D'=4"", and cod ¢ -isinl yp'=¢P". Usmg

these new definitions, we ended up havmg three fewer equa-

tions:
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SS— 252 4SS 52 4S —
$55=1+0v°2 +A22¢25ty—0)+{2(v_2M)
+ ’U“?Uf }Ap—2 ~ ¢SS 222{[ 'Uif) +v}
2(1-2) v=2u 27 ||1-w

X[Apcosl +iBpsinl]

1 7v? -
- B A = a5 204+ B
v-2u 1-2v v—2u
+v?2 v+ MZZA)
L 1-zv]

X[A, cosl +iBysinl],

|:} . uZv?

. ]Bm:—2¢D'+022
v 1-z

[By,cosl
+iAgsinl],
¢=Al(v-w)?+ p21+ uhAy = 2u(v = ) %'y - 220,
cosl ¢°' +i sinl ¢°' =2 (v = p)? + u?] 4>
+ w(Ap = 219°9 = 2u(v = ) B},

cosl ¢P' +i sinl ¢°' =H[(v— w)? - u?]d® — uBy.

Similar reasoning leads us to use the definiti{@07) to
lighten the notation. Agaira, and b, are defined through
a,=Ay/ n andby,=B,/u. We then have

- 1] 1 B
5= 1+22¢>5+ AZ¢° Ty =0) + 5[71 + 1—_2}%

2 1 1
- m¢55+ 522B|:1—_Z + a}[ap cosl +iby,sinl],

1 _'823 — 4 SS ~DI
[a—l 1—Z}ap_a—1¢ roA$* 47

+ZZ,8{a+ %_Z][ap cosl +ib,, sinl],

[ 1, p?
a+l (1-2

}bm: -2¢" +zzﬁ{a+ 1i—z]
X[bm cosl +iagsin ],
¢=2p{[a? + 1]+ a,~ 2a¢"'} - 228¢°5,
cosl ¢°' +i sinl ' =zB{[a® + 1]¢°' + &, - 24°5- 2a ¢},

cosl ¢ +i sinl ¢%' = zB{[” - 114" ~ by}

The first two equations actually tell us that

PHYSICAL REVIEW E 69, 061904(2004

4
(a—1)

1

o -

$55=1+ [zz— ]¢>SS+ A2¢y=0+ —a,~ ¢

- P, (B5)

and the five equations relatirag, by, ¢, ¢, and¢®' can be
turned into

B ( 1 ) ]
{a—l 1-2) Bz a+—_|cosl|a,
—isinlﬂzz{wi}b 2+ PP = — S
1-z]™ a-1""

—isinlﬁzz[a+i}ap+{ 1 +£
1-z a+l 1-z

—,GZZ(Q+ %_Z)cosl]bnﬁ 2¢°'=0,

- Bz g, +[1 - Bz(c?+ 1) ]+ 2Bza §°'
=-2pz ¢S,

— Bz 8+ 2p3za $+[cosl - Bz(a®+ 1)]¢P +i sin| ¢
=-2pz 5,

Bz by +i sinl ¢° +[cosl - Bz(a? - 1)]¢>' = 0.

Subtracting the fourth equation above by the third equa-
tion, we obtain the new fourth equation and thus

[Bz(a+1)%2-1]¢ +[cos| — Bz(a+ 1)?|¢P' +i sinl4P' = 0.
(B6)
Consequently, we have

Bz

1 1
{m—m—ﬂ£<a+—)cos|:|ap

1-z
—isinl ﬁzz[a+1i_z]bm

2+ PP = flqsss,

—iSin|B22{a+i}ap+{ 1 +£
1-z a+l 1-z

1
-,322(a+ 1—_Z>cosl]bm+ 24°' =0,

- Bz gy +[1 - Bz(a?+ )]+ 2Bza $°' = - 2z ¢S

[Bz(a+1)%-1]¢+[cos| - Bz(a+ 1)?]¢P +i sinl ¢P' =0,
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- pz(a? - 1]e”' =0

After a tedious calculation with‘;}exp given by Eq.(111), we
obtain an equation of similar form to E@B2) but with

Bz b, +i sinl $°' +[cosl

,_(1-(1+)?271-(1-(a+1)’p)2]
(1 +a - az)D°(2)[HZ, - H, cosl]

. (B7)

2a+(1-a)l+a)?BZ)[1-(1-a®)BEINY2)

(1+a+ az)DP(2)[H3, - H3, cosl]

G3=

(B8)
where

H%,=1-2z+[1+(a+1)*B47
-21-(1-a?(1+a)?BlE+(1-a??pZ,

H3, = 28(1 +a - a2)’z,

H3,=1+[1-(1+a)?B]z
-(1+)?B2-2B2-(1-a)(1+a)®p?L + (1
- 1-(1+)’°BlF2
+(1-a?)°p%2,

H3, = 2B{a(1 +a) +[a? + 2a(1 - ) B+ (1 - Bz
+a(l-a)(l+a?P2.

Using ¢°Xy=0)=(1/m)[§¢>l and integrating both sides of
(B2) overl from 0 to 7, we can then solve fopSSy=0). It

is straightforward, with notations defined in
(122125, to verify that

V(30?2 - (H3)?= (1 - (1 +a)*B2)F5(2)
X[1-[1-(a+1)?B]z],

V(H3)2 = (H3)?= N S@F 3,2)F 321 - (1 - A BA,

which then leads to Eq$§108—111), (119), and(120).

3. The u'=1 and u”"=0 case

Here, we will consider a specialized case whegre=1.

This, in fact, is the case we commonly used in numerical
he'Ve further note that

nine equations in the general development displayed near the

work. As one may readily observe, it changes six out of t
end of Appendix A, giving
¢5= L +0*2 ¢S+ APy = 0) + 5(d5°+ 47)
+ giz{ﬂ[(l +cosl)S, +iSysin | = 1,]

+(v—w[(Dy+1p,) cosl +i(Dy— 1) sin ]},

Egs.
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Bp°=2¢°° + ¢ 'cos| — iy sin|
+vZ{[uS, + (v - w)Dy]cosl
+i[ S+ (v = wDplsin | = ul o},

o= = ocosl +iyd'sin| +vZ{[ uSy + (v = p)Dylcos!
+i[uS+ (v = wDplsin| = ul ),

¢y =2¢" + 2 cosl iy sinl
+0Z{uS, + (v= I, cosl =il ,sinl]},

Sl_ , DI i DI
$m=¢m cosl =iy 7 sinl

+0Z{uSy+ (v = wllcosl =il sinl]},

PP =2 ¢+ ¢ = B3]+ (v ) ?¢°P
+ u(v= ey = (¢ cosl-iyl'sin)},

B =225+ (= 2+ (o= ) 5,

Yo = H2u?¢>+ (v= )Ty cosl =iy sinl]+ u(v=p)
X[+ 63°- 281 - w43}, (9

Ym = A=A ym cosl -y sini]
+ plvgm = (v=wW el
Now it looks more promising to work with the combina-
tions of the variablest®®, ¢'", yp', ¥ ,Dp, D, 1, | e Basi-

cally, we can transform the equatlons mto those variables
depending onpSS Explicitly, we will also need to use

1
#0= =L o= 2ud™ + (V_“ (Ip-2ud®3,

w)?

M

1
SD
= D, + -
(v=w?"

m m

v

1
o3'= Eup— 2ud™9,

_ (1+2v cosl)D,+ (cosl + zv)l, = i(ly— ZvDyy) sin |
1-7%7
:(1 +2v cosl)(Dy+1,) +iZv(Dpy = I ) sin|
1-7%°
_ (X -coshlp+ily
1+

sin|
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S = (1-2v cosl)Dy,+ (cos| =)l —i(l,+ ZvDy) sin| ¢°P = HpP " + (v - w)?¢°° + u[Dy— ud® - u(v-p)
1-7%? X[y cosl =iy Pl sinl]},
_(1-2v cosl)(Dy— 1) —izZv(Dy + 1) sin|
B 1-7%7°
(1 +cosl)l il , sin | ¢" = Hullp = nd>I + (v =)'},
+ moL . (B10)
1+

We then turn those nine equations in EB9) first into l//? = {22 SS+ (V—M)Z[l/f,?l cos| — idanq' sinl]

1 z2 —2u(v— )" + ull, + Dy — 4ud>3},
¢ss: 1+U222¢SS+ A22¢§S(y=0)+5(¢> ¢ MU I, w(v—we" + ul p p~4ud )
+ 252 ———(L+cosl) + (v—pu)cosl [(D,+1p) DI _5 2r ; DI Dl
alkees “ ’ Ui =2 - wAyR cosl =iy sinll+ ulln=Dyl).
+isinl L 'qu tv- M}(D - Im)} Given these equations, it is easier for calculation’s purpose to
use
SD Sl _ DI + g Dl 5
SO+ ' = 2 PP + @' + ¢ D' cosl =iy Dlsinl] - wo A, A,=(Dp+1y),
+vZ {LA(l+COS|)+(v—,u)COS|}
1-zv
I,
><(Dp+|p)+isinl[ - +V—,u,:|
BmE(Dm_lm)v
><(Dm_lm) )
I
SI_ DI DI ) m(1+2zv cosl)
o =2¢" +iy cosl—iy SII’]|+()ZZ{1_—22v2
Dl — DI + 0 DI o
50 sin| “ ¢~ =4y cosl =iy sinl,
X(D +|)+I 222(D ) EMJ
DI _ /DI _ I
+(V—M+ 'uA )(Ipcosl—ilmsinl)}, ¢° = g cos| uﬂjsml
1+zw
~ d)“
b= == 2 cosl =iy D' sinl] - o, ’
+v7 | ——(-1+cosl) + I
{[ ZU( cosl) + (v—- M)cos} b= "0+ ¢,
_— i
X (D=1l +isinl [1_21) +V‘M] as independent variables. The equation 7?° can be
slightly simplified to reinforce our introducing new nota-
tions.
X(Dp+1p) (s
2
1-2 cosl SS= 1 +A2¢SRy=0) + [ R -4—L— -2 ss
=y cosl—ig D sint+ o] 2N g ) @ HY=0+ |2 -ac 520 |
1-7% 1
+———A = (p+ P + | (B11)
,qusmI(D iy By (r—p) Ap=(p+ (- )2p
-2 1+ _ _
Together with our previous definitions d(1)py), we
K 0o now have the other eight equatioi® the order of
+(V‘M+ 1+2v)(|mCOS|_IIPSIn|)}’ + 43 |, SD_ yS1 %DD_,_C:bII ¢“(m¢5|, W o: d)
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_AL _LZ 2[¢+¢D|] ,U,UZZ| +2 |:2+ ¢SS
v-u (v-p) - M Ve p
+ 22{[—(1+cosl)+(v ,u)cosl}A +i sml{ = +V—,L,L:|Bm},
bi 1-z
_IP_:2¢||+(7)D|+022{MA +i Sln| 2 }+2L¢ss
VU 1-7%? 22 2B (v—w)
5 (=1 +cosl) o
+v22{{(v—,u)cosl+’u“1+—2v]lp—| sin| {v—,u+ 1f2v}lm}’
i+L2 2¢°" - w2 +v22{{—( 1+ cosl) + (v—,u)cosI]BmH sinl{ ~ +v—,u}Ap},
v-u (v—p) pa) 1-2z
Im o1, s #L-2wcosl) v }
V—M_d) +vz{—l_zzv2 Bn—i sinl _22 A

N 1 I o
+v22{[(v—,u) cos|+'““(1++—(zs)}|m—| sin| {V_'l“-lfiv}lp}'

b= ZAuPd" + (v - w2+ ulAy— 21> - u(v—w e},
" =Zully— nd>Y+ (v- w)?¢'"},
@' cosl +i¢P sinl =2{(v- )¢ - 2u(v - W " + p[A, - 214>},

' cosl +ig°' sinl = Z{(v - u)2¢°' - uB.}.
We again rescale the variables by replacki¢any capital symbolby ux and using the definitioi107) to obtain

EE+_%:2[¢+;Z'SD|]_IBZZip+E|:2+1:|¢SS
o o

a

+,822{[—(1+cosl)+acosl}apﬂ sinl [%_th}b }

1+zcosl

i;”— =[2¢" + ¢P'] + BZZ[—ZZap+ i sin Iibm} + Edﬁs

+ B2 {Mmcosl]i —isin|{a+i]im ,
1+z P 1+z

1+cosl)

ti:'”“+;—"‘——2¢'3' Bzzim+B22H(_T+acosl]bm+i sin {%_Z+a}ap},

1-zcosl

——<;/>D'+,822{ — b — |sml1 2% }

+ B2 (1+COSI)+acosl im—isinl i+ai ,
1+z 1+z P

b= pAP" + PP+ [a,— 2¢°9 - ad'},

¢! = plip - ¢°9+ 24"},
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#°' cosl +igP sinl = Bz{aP PP -

¢ cosl +i¢' sin| = pz{a’d™

Furthermore, the main equation ¢fSbecomes

¢%5=1+AZ2¢5y = 0)+{22 45—21}¢SS+ 1a

~(p+ ")+ élp (B12)

Following the previous two cas&$. and 2) discussed in
this appendix, we will order our variables in the following

way: ay, by, ¢, @', ¢°', ip,im, @". That is to say, the first five

PHYSICAL REVIEW E 69, 061904(2004

2a¢!" +[a, - 24°},

— b}
|
m_ o, 22[1 zcoslb i sin|—2 ]
P+ B -z PmTisinlT/a,
+,822{{%+ac03|:|im

. 1 .
—isinl | ——+aliy(,
[1+z ] }

¢! = pli, - 659 + 2"

variables agree with previous definitions. We now arrange after a tedious calculation Wl'ﬂGlXp given by Eq.(11),

the equations as

&

(2%

#1220+ 3P - +3{2+3}¢SS
az P o o
+,822{[—(1+cosl) +a cosl}ap

o 1
+isinl [1—_Z+a}bm},

(=1 +cosl)
1-z

1

b= pAP" + P+ [a,—- 2¢°9 - ad'},

b

Im

a,Z

24P - B2+ ,822{ {

+acos|]bm+i sin| {

" cosl +ig? sinl = Bz{a?¢" - 2a4" +[a, - 245},

#°' cosl +id° sin | = Bz{a?'

= b},

1tzeosl |\ isini—2— b]
-2 P 1

—_2m
(=1 +cosl)

g SS
t4 +322H 15

—isinl +ii
S al+zm,

o = 241 + 0]+ BZZ[

+aCOS|]ip

we obtain an equation of similar form to E@2) but with

(1-a(l+®)B2L-(L-(1+a)’Bz- L7

G?’=
(1 + a - az)D%(2)[H3, - H3, cosl] ’
(B13)
5 20[1-a(1+a)Bz](1+a’BZ)N5(2)
= 3 ., (B14)
(1 +a+ az)D%(2)[Hy, — Hy, cosl]
where
Hi=1-22+[1- 28+ (a+1)*B2 - 20%(1 + @)?B?Z
+ a4ﬁzz4,

H3, = 2B8(1 + a - a2)?z,

HY=1+[1-(1+®)?Blz- a2 +a) B2+ a*(2 + ) p?2
+a'{1-(1+)°Blp?2 - °5°7,

Hg’l =2aB{l+a+al-(1+a)’Blz- (1 +a)BF2.

Using ¢°Xy=0)=(1/m)[§ ¢l and integrating both sides of
(B2) overl from 0 to 7, we can then solve fopSYy=0). It

is straightforward, with notations defined in Egs.
(129—(133), to verify that

V(H2)? - (H3)?=VF 521 - (1 - (1 + 0)?B)z- o?B2],

V/(Hgo)z S GHIEE VF $1(2F SADFS2 (L +a?B2),
which then leads to Eq$108—111), and(126) and(127).
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