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Sequence alignment is one of the most important bioinformatics tools for modern molecular biology. The
statistical characterization of gapped alignment scores has been a long-standing problem in sequence alignment
research. In this paper, we provide a self-contained exposition of sequence alignment, a short review about how
this problem is related to the directed polymer problem in statistical physics, and some analytical results that
can be used for predicting alignment score statistics. Basically, we present two classes of solutions for the
gapped alignment statistics by explicitly calculating the evolution of the few-replica partition function in 1
+1 dimensions. We have obtained the conditions under which the more important extremal parameterl,
characterizing the alignment score statistics, becomes predictable.
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I. INTRODUCTION

The directed polymer(path) in random media(DPRM)
problem [1–3] is one of the best studied systems with
quenched disorder. In ad+1 dimensional DPRM system,
there ared regular spatial dimensions and one timelike di-
mension that is singled out to specify the elongated direction
of the path. The displacement made by the DP, when pro-
jected onto the timelike direction, is often identified as the
lengthof the DP. Due to the presence of the quenched disor-
der, the system’s free energy depends on the particular real-
ization of the disorder involved, and it is the probability dis-
tribution function(pdf) of the free energy that characterizes
the statistical properties of the system. The pdf of the free
energy can be obtained in various ways. It can be obtained
directly by numerical means, or it can be characterized by its
moments which sometimes can be analytically calculated, or
it can be mapped to other problems whose solutions are
available.

The basic idea of the moment method is to use the replica
trick [4] and the cumulant expansion[5]. One first writes
down, under a given realization of the disorder potential, the
partition function ofn identical copies of the system; one
then performs the anneal average of thisn-replica partition
function over the disorder; the replica numbern is then
treated as a continuous variable conjugate to the free energy
to provide the cumulant expansion. Although there is some
limitation to the validity of such inference[6–8], it neverthe-
less provides a valuable analytical route to tackle such prob-
lems. In 1+1 dimensions, the replicated system can be
mapped[2] into a one-dimensionaln-particle system whose
ground state energy can be found exactly, whence the physi-
cal properties of the original system in the infinite length
limit can be inferred.

In terms of mapping to other problems, the DPRM can be
mapped[9] into the noisy Burgers equation[10], whose criti-
cal exponents in 1+1 dimensions have been worked out[11].
With a direct Hopf transformation, the DPRM can also be

mapped into the Kardar-Parisi-Zhang(KPZ) equation[12]
which describes surface growth(roughening) under spa-
tiotemporal noise, and has been intensively studied for many
years[13].

Recently, this system has found another manifestation1 in
sequence alignment[15,17], one of the most powerful tools
in modern molecular biology. Computer-assisted sequence
alignment has become increasingly important due to the
rapid growth of DNA and protein databases. The use of se-
quence alignment ranges from identifying the possible func-
tionality of newly sequenced DNA/protein to the construc-
tion of phylogenetic trees[18–20]. Under sequence
alignment, the relatedness of two sequences compared is
quantified by an alignment score and its associatedp value.
The latter is the probability of obtaining the same or even
higher score by aligning two uncorrelated random sequences,
and thus provides a more meaningful measure of homology
detected.

Unfortunately, rigorous results relating thep values to
alignment parameters(or scoring function) employed exist
only for gapless alignment, which is less sensitive in detect-
ing distant homology. When gaps are allowed, the score dis-
tribution is known empirically to follow a similar form but
the full characterization is still incomplete. In a few previous
publications[21–23], we have shown that the more impor-
tant extremal parameterl of the score distribution can be
predicted if a simple procedure is followed. We call this case
the first solvable class.

In this paper, we show that there exists a second solvable
class, and provide the detailed procedure for obtaining this
solution via computing the two-replica partition function ex-
actly. We have also recently shown[24] that the combination

1When cast in the language of DPRM, there does exist a subtle
difference between the sequence comparison and the regular DPRM
problems in terms of the noise correlations[14]. Nevertheless, it has
been argued[15] and shown numerically[16] that such a difference
does not lead to much effect.
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of these two classes and the employment of a cooling map
enables us to extend extremal parameter predictability to ge-
neric finite-temperature alignments, including the probabilis-
tic alignments and the optimal alignments. The main results
that are related to alignment score statistics are summarized
by Eqs. (45), (90), (109)–(113), (119), (120), (126), and
(127). Equation(59) and the remarks around it can also be of
important use in the study of granular systems.

This paper is otherwise organized as follows. In the fol-
lowing section, we give a self-contained introduction to se-
quence alignment, establish notation, and explain the condi-
tions for solvability. In the third section, we focus on the
so-called linear gap case. Both the first solvable class and the
second solvable class will be presented in detail to pave the
way for the more elaborate affine gap case. Since this is the
case that is closely related to the traditional DPRM problem,
we also provide some details regarding the two-replica
bound state which can potentially be used to construct the
many-replica solutions. In the fourth section, the key results
for the second solvable class under the affine gap costs will
be described. The more detailed but important intermediate
steps, however, are relegated to the appendixes for readers
interested in the detailed procedure. A summary and some
concluding remarks constitute the last section.

II. SEQUENCE ALIGNMENT AND THE DIRECTED PATH
PROBLEM

Sequence alignment can be used to identify homology
between protein or DNA sequences. An alignment between
two sequencesa and b, which themselves can be subse-
quences of some longer sequences, is given in Fig. 1. In this
particular example, both sequences contain seven characters.
a=fAACGTTGg while b=fAGGCTGGg. We will use the no-
tation ai sbjd to refer to theith (j th) character of sequence
asbd. Thus,a3 is C, b5 is T, etc.

The quality of an alignment is usually quantified by the
associated alignment score, which is the sum of pairwise
substitution scoresssai ,bjd and gap penaltiesg si0, i fu j0, j fd.
Here ssai ,bjd denotes the pairwise substitution score when
we pair up characterai from sequencea with the characterbj
from sequenceb. Because of its dependence on two charac-
ters (indices), a set of substitution scores is often called a
substitution matrixor scoring matrix. A gap is formed when
a character from one sequence is not paired with any char-
acter from the other sequence, and the functiong si0, i f u j0, j fd
returns the gap penalty when the substrings(of consecutive
characters) fai0+1, . . . ,ai f

g and fbj0+1, . . . ,bj f
g are not paired

with characters from their respective countersequences. Ap-
parently, the casei0= i f (or j0= j f) indicates that the substring
fai0+1, . . . ,ai f

g (or fbj0+1, . . . ,bj f
g) contains no characters.

It is a common practice to use the termscoring functionto

denote the combination of the substitution matrix and the gap
penalty function used for sequence alignment. Under a given
scoring function, the associated alignment score of the ex-
ample in Fig. 1 will be ssA,Ad−gs1,3u1,2d+ssG,Gd
−gs4,4u3,4d+ssT,Td+ssT,Gd+ssG,Gd, which consists of
five pairwise substitution scores and two gap penalties. Al-
though there are many possible alignments, corresponding to
different arrangements of gaps and substitutions, between
two sequences, one usually refers to the alignment with high-
est alignment score as theoptimal alignmentand its associ-
ated score as thealignment score. The alignment example
above is often termedglobal alignmentsince the two se-
quences(a andb) are aligned from head to toe.

The more frequently used alignment method, however, is
local alignment. Local alignment aims to find only the most
homologous segments, one from each sequence compared,
instead of finding the optimal global alignment between the
two sequences. Under a scoring function, the most homolo-
gous pair of segments between two sequencesa and b is

identified with the subsequenceâ of a and the subsequenceb̂
of b such that the global alignment of these two subse-

quencesâ and b̂ yields the highest alignment score. In this
context, thehighestglobal alignment score resulting from the
global alignment of all possible subsequence pairs is also
termed as theoptimal local alignment scoreor simply the
alignment score.

The scoring function used in sequence alignment is often
designed by experienced biologists. Different substitution
matrices are designed for capturing different types of simi-
larity (or evolutionary distances). The most commonly used
substitution matrices are the PAM series[25] and the BLO-
SUM series[26]. The careful curatorial work that has gone
into the construction of the PAM and BLOSUM matrices has
rendered them extremely valuable tools for studying and de-
tecting similarities across a great spectrum of protein fami-
lies, and these or related matrices are used by default in the
most popular protein database search programs such as
FASTA [27] and BLAST [28]. The gap penalty function can
have many variants. The most commonly used gap function
is the so-called affine gap function where the gap function
g si0, i f u j0, j fd depend only on the lengths of each unpaired
substring, i.e.,

g si0,i f u j0, j fd = gs,1 = i f − i0,,2 = j f − j0d,

with

g s,1,,2d =5
0, ,1 = 0,,2 = 0

d + «s,1 − 1d, ,1 ù 1,,2 = 0

d + «s,2 − 1d, ,1 = 0,,2 ù 1

d̄ + 2d + «s,1 + ,2 − 2d, ,1 ù 1,,2 ù 1.

s1d

The parameter« is called the gap extension penalty,d−« is

called the gap initialization cost, whiled̄ is an extra penalty
when both,1 and,2 are not zero. As we will describe later,

FIG. 1. An example of global alignment between sequencea
andb.
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the case that is of strongest connection to DPRM is the linear

gap limit, i.e., when«=d and d̄=0.
The Needleman-Wunsch[29] algorithm for global align-

ment and Smith-Waterman algorithm[30] for local align-
ment are well established. In the following, we will sketch
both algorithms together with their finite-temperature coun-
terparts, including the Hidden-Markov-Model(HMM ) based
algorithms, and make connections to the DPRM problem.
For a more detailed exposition relating the finite-temperature
algorithm to the HMM based algorithm, see reference[21].

A. Alignment algorithms

We will first sketch the optimal alignment algorithms for
both global alignment and local alignment, and continue with
their finite temperature counterparts in order to elucidate
their connection to the DPRM problem. Useful notation will
also be established along the way.

Let a=fa1,a2, . . . ,aMg and b=fb1,b2, . . . ,bNg be two se-
quences of lengthsM and N, respectively, with elementsai
and bj taken from a finite character setx. Under a given
scoring function, i.e., a substitution matrix and a gap func-
tion, one can align these two sequences either locally or glo-
bally using the algorithms below.

1. Optimal algorithms

The optimal alignment algorithms aim to find the align-
ment resulting in the highest alignment score defined earlier.
This is usually carried out by using the so-called dynamic
programming method. Let us start with the global alignment
algorithm by Needleman and Wunsch[29]. For clarity, we
introduce the alignment lattice in Fig. 2 with sequencea laid
along thex direction and sequenceb laid along they direc-
tion. Note that the alignment example given in Fig. 1 is
shown as a(directed) path in the alignment lattice. In fact,
each alignment is represented by a unique path and vice
versa.

Define the auxiliary quantitySm,n that records the highest
global alignment score for alignment paths starting at the
origin s0,0d and terminating at pointsm,nd. It is not hard to
see that for the linear gap case the auxiliary quantitySm,n
obeys the following recursion relation:

Sm,n = maxHSm−1,n−1 + ssam,bnd
Sm−1,n − «,Sm,n−1 − «

J , s2d

with the boundary conditions

S0,nù0 = − n« and Smù0,0= − m«. s3d

The alignment score is then obtained asSM,N and the as-
sociated optimal alignment is obtained by thetrace-back
method[18].

For local alignment, one compares not only among the
global alignment paths, which start at the origin and termi-
nate atsM ,Nd, but rather among the alignment paths whose
starting point can be anywhere on the alignment lattice and
whose terminating point can also be anywhere on the align-
ment lattice. In particular, the local alignment actually allows
the null alignment, i.e., an alignment whose starting point
and terminating point are the same on the alignment lattice.
This seemingly difficult task was solved elegantly by the
Smith-Waterman algorithm[30]. Here one again introduces
the auxiliary quantityHm,n which now records the highest
global alignment score for alignment paths terminating at
point sm,nd regardless of where the path start. Interestingly,
this new auxiliary quantity obeys a similar iterative equation

Hm,n = maxHHm−1,n−1 + ssam,bnd
Hm−1,n − «,Hm,n−1 − «,0

J , s4d

with even simpler boundary conditions

H0,nù0 = 0 and Hmù0,0= 0. s5d

Note that the introduction of 0 into the choice in Eq.(4)
allows for a new starting point when the current best score is
still below the threshold 0. The final alignment score is then
obtained by

Sfa,b;s,gg = max
1ømøM

1ønøN

hHm,nj. s6d

When the affine gap function is used, more auxiliary
quantities are needed. Indeed, for global alignment with af-
fine gaps, three auxiliary quantitiesSm,n

S , Sm,n
D , and Sm,n

I are
defined through the recursion relations

Sm,n
S = Sm−1,n−1 + ssam,bnd,

Sm,n
D = maxhSm−1,n

S − d,Sm−1,n
D − «j, s7d

Sm,n
I = maxHSm,n−1

S − d,Sm,n−1
I − «

Sm,n−1
D − d − d̄

J ,

with

FIG. 2. The alignment lattice. Upon laying sequencea along the
horizontal axes and sequenceb along the vertical axes, we note that
the directed path here uniquely represents the alignment shown in
Fig. 1. The new coordinate systemsx=m−n,t=m+nd is also shown
to illustrate the connection between the recursion relation(2) used
in sequence alignment and the corresponding one(14) used in
DPRM.
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Sm,n = maxhSm,n
S ,Sm,n

D ,Sm,n
I j, s8d

and boundary conditions

S0,nù0
D = Snù0,0

I = − `,

Sn.0,0
D = S0,n.0

I = d + sn − 1d«, s9d

S0,n.0
S = Sn.0,0

S = − `,

S0,0
S = 0.

Similarly, for local alignment with affine gaps, three other
auxiliary quantitiesHm,n

S , Hm,n
D , andHm,n

I are defined through
the recursion relations

Hm,n
S = max5Hm−1,n−1

S + ssam,bnd
Hm−1,n−1

D + ssam,bnd
Hm−1,n−1

I + ssam,bnd,0
6 ,

Hm,n
D = maxhHm−1,n

S − d,Hm−1,n
D − «j, s10d

Hm,n
I = maxHHm,n−1

S − d,Hm,n−1
I − «

Hm,n−1
D − d − d̄

J ,

with

Hm,n = maxhHm,n
S ,Hm,n

D ,Hm,n
I j, s11d

and the boundary conditions

H0,nù0 = Hnù0,0= 0,
s12d

H0,mù0
D = H0,mù0

I = Hmù0,0
D = Hmù0,0

I = − `.

The optimal scoreS is still given in terms of theH’s accord-
ing to Eq.(6).

2. Finite temperature variants and DPRM

The recursion(2) in fact is a commonly used approach,
i.e., the transfer matrix, in statistical physics. In particular, it
is very similar to the transfer matrix used to tackle the zero
temperature DPRM problem in 1+1 dimension. For a de-
tailed review of the DPRM problems, readers are referred to
Ref. [13] and references therein. In a 1+1 dimensional
DPRM system, each lattice point is labeled by two discrete
indicesx and t for space and time, respectively.

To illustrate the connection between DPRM and the se-
quence alignment problem, we focus on the following vari-
ant of DPRM. A directed pathA starting from the origin
sx=0,t=0d can be regarded as the “world line” of a particle
in one dimension. For a given realization of randomness, a
random potentialusx,td is assigned to the bond connecting
lattice points sx,t+1d and sx,td. There is also aconstant
elastic penalty associated with each bending of the path, e.g.,
going from sx,td to sx−1,t+1d instead of tosx,t+1d. The
quantities of interest include the free energyFstd and the
restricted free energyFsx,td, which are related through
Fstd=oxFsx,td. The restricted free energy is defined by

Fsx,td = − t lnH o
Ausx,td

expf− EsAd/tgJ s13d

where the sum is over the paths terminating at pointsx,td, t
is the temperature of the system, andEsAd, sum of the ran-
dom potentials and the elastic energies contributed by all the
bonds traversed by the pathA, is the energy associated with
the pathA.

At zero temperature, the free energy is the energy of the
lowest energy path. Writing the elastic energy as«̄, one can
write down easily the transfer matrix for finding the lowest
energy path and its associated energy via the following re-
cursion:

Esx,td = min5Esx,t − 1d + usx,t − 1d
Esx − 1,t − 1d + «̄

Esx + 1,t − 1d + «̄
6 . s14d

The lowest energy at timeT is then given by

min
x

Esx,T d. s15d

By introducingx=m−n and t=m+n, we can rewrite the re-
cursion(2) in terms ofx and t

Ssx,td = max5Ssx,t − 2d + ssx,t − 1d
Ssx − 1,t − 1d − «

Ssx + 1,t − 1d − «
6 , s16d

with ssam,bnd rewritten asssx,t−1d. The reason we did not
write ssam,bnd asssx,td comes from the observation that the
letter pairsam,bnd is located atsm−1/2,n−1/2d, not sm,nd,
on the alignment lattice(see Fig. 2). Note that if one defines
Ssx,td;−Esx,td, then the above recursion is turned into

Esx,td = min5Esx,t − 2d − ssx,t − 1d
Esx − 1,t − 1d + «

Esx + 1,t − 1d + «
6 . s17d

Therefore, the negative of the substitution score plays the
role of the potential and the gap cost plays the role of elastic
energy. However, we also note that the recursion in Eq.(17)
uses energies at timet−2 andt−1 to update energies at time
t, while the energies at timet only depends on energies at
time t−1 for the recursion(14). This slight difference actu-
ally makes the solution of the sequence alignment case con-
siderably more involved than the DP case.

The similarity between the two recursions(14) and (16),
however, immediately leads to the finite-temperature gener-
alization of Eq. (16). Introducing the temperaturet, the
“Boltzmann weight”Wsx,td, the gap weightn;exps−« /td,
and the substitution weightvsx,td=expfssx,td /tg, we write
down the recursion for the Boltzmann weight

Wsx,td = n fWsx − 1,t − 1d + Wsx + 1,t − 1dg

+ vsx,t − 1dWsx,t − 2d, s18d

or using the originalsm,nd indices
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Wm,n = + n fWm−1,n + Wm,n−1g + vm,nWm−1,n−1, s19d

with vm,n=expfssam,bnd /tg=vsx,t−1d. Using the appropri-
ate boundary conditions,

Wnù0,0= W0,nù0 = nn for Wm,n,

Wsx,t = 0d = dx,0,

Wsx,t , 0d = 0,
for Wsx,td

it is easily shown that

Wsx,td = Wm,n = o
Auhsm,nd or sx,tdj

expf− EsAd/tg s20d

sums the Boltzmann weight of every path starting from the
origin and terminating at lattice pointsm,nd or equivalently
sx,td. Note that Wsx,td=expf−Fsx,td /tg and Wm,n

=expf−Fm,n/tg. Both recursions(18) and (19) can be re-
garded as finite-temperature generalization of Eq.(2). In fact,
the zero temperature limit is recovered by taking

Sm,n = − lim
t→0

Fm,n = lim
t→0

t ln Wm,n s21d

for every sm,nd. Furthermore, the total partition function is
then obtained by summinge−Fm,n/t over the boundary points
of consideration.

Along a similar line, the finite-temperature generalization
of Eq. (4) can be written as

Zsx,td = n fZsx − 1,t − 1d + Zsx + 1,t − 1dg

+ vsx,t − 1dZsx,t − 2d + 1 s22d

or

Zm,n = n fZm−1,n + Zm,n−1g + vm,nZm−1,n−1 + 1. s23d

Note that the boundary conditions are now given by

Znù0,0= Z0,nù0 = 1, for Zm,n

Zsx,t = uxud = 1,

Zsx,t , uxud = 0,
for Zsx,td,

and the total Boltzmann weights from paths with all allowed
starting points and terminating points can be easily written as

Z = o
m,n

Zm,n. s24d

The +1 term in Eqs.(23) and(22) can be regarded as adding
exps0/td or can be derived formally using the Green’s func-
tion. Basically, any starting point is allowed for local align-
ments. For a path terminating at pointsx,td, it can accom-
modate any starting pointsx8 ,t8d with rangess−t+xøx8
øt+x,t8= t−td ∀tù0, or in the backward “light cone” of
the pointsx,td. Let ĝsx,td denote the retarded Green’s func-
tion satisfying

L̂ĝsx,t;x8,t8d ; ĝsx,t;x,t8d − nfĝsx − 1,t − 1;x8,t8d

+ ĝsx + 1,t − 1;x8,t8dg

− vsx,t − 1dĝsx,t − 2;x8,t8d = dt,t8dx,x8,

s25d

whereL̂ is the discrete analog of −n¹2−v, and retardedness
requires that

ĝsx,t , t8;x8,t8d = 0. s26d

It is not hard to see that theWsx,td for global alignment is in
fact the Green’s function with source pointsx8=0,t8=0d, i.e.,
Wsx,td= ĝsx,t ;0 ,0d. For local alignment, we can write the
correspondingZsx,td as

Zsx,td = o
x8t8

ĝsx,t;x8,t8d, s27d

because Eq.(26) automatically takes care of the condition
that the source pointsx8 ,t8d must be within the backward

light cone. Upon applying the linear operatorL̂ to Zsx,td, we
have

L̂Zsx,td = o
x8t8

dx,x8dt,t8 = 1. s28d

This formally explains why the +1 term appears in Eqs.(23)
and (22).

For the finite-temperature version with affine gaps, we
follow Eq. (1) to obtain the affine gap weightsgs,1,,2d

gs,1,,2d =5
1, ,1 = 0,,2 = 0

m · n,1−1, ,1 ù 1,,2 = 0

m · n,2−1, ,1 = 0,,2 ù 1

m8 · m2 · n,1+,2−2, ,1 ù 1,,2 ù 1,

s29d

with m=exps−d /td being the first gap weight andm8=exps
−d̄ /td being the extra gap weight. We introduceW m,n

S , W m,n
D ,

andW m,n
I that are counterparts ofSm,n

S , Sm,n
D , andSm,n

I respec-
tively in Eq. (7). The recursions of these auxiliary quantities
are then given as

W m,n
S = vm,nfW m−1,n−1

S + m1
D ·W m−1,n−1

D + m1
I ·W m−1,n−1

I g,

W m,n
D = m2

DW m−1,n
S + nW m−1,n

D ,

W m,n
I = m2

I W m,n−1
S + nW m,n−1

I + m8m2
I m1

DW m,n−1
D , s30d

where parametersm1s2d
DsId satisfy and m1

D ·m2
D=m1

I ·m2
I =m

=exps−d /td. Note that the affine gap weight is not imple-
mented in the simplest manner here, since the Boltzmann
weight of each path satisfying the affine gap weight proper-
ties (29) can be achieved without introducingm1s2d

DsIds. The

introduction of these extra parameters, however, is useful
when we identify the relationship between the finite-
temperature alignment and theprobabilistic alignmentthat
we will mention briefly later. The boundary conditions for
W S,D,Is are
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W 0,nù0
D = W nù0,0

I = 0,

W n.0,0
D = m2

Dnn−1,

W 0,n.0
I = m2

I nn−1, s31d

W 0,n.0
S = W n.0,0

S = 0,

W 0,0
S = 1. s32d

The total Boltzmann weight of paths starting from the origin
and terminating atsm,nd is then given by

Wm,n = W m,n
S + W m,n

D + W m,n
I = expf− Fm,n/tg. s33d

For local alignment with affine gaps, we again introduce
Z m,n

S , Z m,n
D , andZ m,n

I that are counterparts ofH m,n
S , H m,n

D , and
Hm,n

I , respectively. The recursions of these auxiliary quanti-
ties are then given as

Z m,n
S = vm,nfZ m−1,n−1

S + m1
D ·Z m−1,n−1

D + m1
I ·Z m−1,n−1

I g + 1,

Z m,n
D = m2

DZ m−1,n
S + nZ m−1,n

D ,

Z m,n
I = m2

I Z m,n−1
S + nZ m,n−1

I + m8m2
I m1

DZ m,n−1
D . s34d

The total Boltzmann weight from paths that can start any-
where but terminate atsm,nd is then given by

Zm,n = expf− Fm,n/tg = fZm,n
S + Zm,n

D + Z m,n
I g. s35d

The total Boltzmann weight from all allowed paths on the
alignment lattice is again given by Eq.(24).

B. Alignment score statistics

It is important to realize that the value of the optimal
scoreS does not in itself convey any meaning regarding the
degree of homology between the sequences being aligned.
One way to assess sequence homology is to compare the
scoreS with the optimal score of aligning sequences from a
null model. A frequently used null model is that of the mu-
tually uncorrelated Markov random chains of rank zero,2 un-
der which the joint probability of observing sequencesa and
b is given by

P0fa,bg = p
1ømøM

1ønøN

psamd · psbnd, s36d

wherepsad is the background frequency for the elementa,
with oaPxpsad=1. The pdf of optimal scores for the align-
ment of random sequences is

pdfsSd = kd sS − Sfa,b;s,ggdl0, s37d

wherek. . .l0 denotes average over the null sequence distribu-
tion (36). The pdf(37) provides thep value that an alignment

of two uncorrelated random sequences receives an optimal
scoreS.

1. Gapless alignment

Clearly, the pdf(37) would depend generally on the se-
quence lengthsM ,N, and the scoring functionss andg. For
gapless alignment, the form of the distribution function is
known exactly[31–34] in the asymptotic limitM ,N@1. For
all scoring systems satisfying the condition

o
a,bPx

psadpsbdssa,bd , 0, s38d

which includes all the PAM[25] and BLOSUM[26] matri-
ces, the pdf reaches the universal form

DsSd = KMNl expf− lS − KMNe−lSg, s39d

known as the Gumbel distribution[35]. This distribution is
specified completely by the two parametersl and K,
with a mean kSl0;S0=l−1fge+ln KMNg where ge

=0.577 215 6. . . is the Euler constant, and an exponential tail

DsS @ S0d = lKMNe−lS, s40d

characterized by the parameterl.
The theory of Karlin and Altschul provides explicit for-

mulas for these parameters in terms of the scoring functions.
For example,l can be found as the unique positive root of
the equation

o
a,bPx

psadpsbdelssa,bd = 1. s41d

A more complicated expression exists for the calculation of
K, which we will not describe here but can be found in[32].

2. Gapped alignment

Compared to gapless alignment, the statistics of gapped
alignment for the null model(36) are much more difficult to
characterize. First of all, the average optimal scoreS0 does
not always have logarithmic dependence on sequence
lengths. For sufficiently small gap cost, the mean score in
fact acquires alinear dependence on sequence length even if
condition (38) is satisfied, i.e.,S0=cN (for sequences of
lengthsM <N@1), with the proportionality factorcù0 de-
pending on the substitution scores and gap cost. The critical
line c=0 defines the locus ofphase transitionpoints[36–38]
separating the linear and logarithmic regimes ofS0. Various
statistical properties in the vicinity of this log-linear phase
transition have been characterized in several recent studies
[39,40]. Also, ample empirical evidence[16,41–46] suggests
that the optimal scoreS of gapped alignment again obeys the
Gumbel distribution(39) in the logarithmic phase. However,
the functional dependence of the Gumbel parametersl and
K on the scoring functions is not known.

Recently, an efficient numerical method was developed by
Olsenet al. [16] to characterize the tail of the Gumbel dis-
tribution. The method utilizes intermediate computational re-
sults, e.g., the restricted local alignment scoreHm,n, also
known as the “score landscape.” The landscape consist of a

2This type of Markov chain is also commonly referred to as inde-
pendent identically distributed(iid) chain.
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collection of positive scoring “islands,” i.e. clusters of posi-
tive H’s, separated by a “sea” atH=0. The peak scores of the
islands are found to follow Poisson statistics. From this, the
Gumbel distribution of the optimal scoreS can be derived.

The study of island statistics indicates that the key to un-
derstanding the Gumbel distribution is characterization of the
probability tail of obtaining asingle large island, the statis-
tics of which can be more conveniently studied in the context
of global alignment. Using the saddle point method, we gave
[21] a heuristic derivation of the Poisson distribution of the
large island scores. The results lead to the Gumbel distribu-
tion for the optimal scores, as well as the all-important Gum-
bel parameterl, in terms of the solution of the equation

Vsld ; lim
N→`

kelhsNdl0 = 1. s42d

Note thathsNd=max1ø jøNhSj ,N,SN,jj, with Sm,n obeying Eqs.
(2), (7), and(8), andkSN,Nl0,0 for largeN is also required
to ensure the system is in the logarithmic phase. The condi-
tion (42) for the Gumbel parameterl was also derived[48]
by first assuming the alignment score distribution follows the
Gumbel distribution.

The functionVsld contains a great deal of information
and is difficult to compute in general. Only recently has it
been computed[48] for a special choice of scoring
functions,3 with

ssa,bd = H1, if a = b

− 2«, if a Þ b,

and linear gap costsd=« , d̄=0d, under the(weak) approxi-
mation that the scoresssam,bnd are uncorrelated for different
m’s or n’s. The resultingls«d obtained in this case is in
excellent agreement with extensive numerical simulation
[48], and demonstrates the validity of the formula(42). How-
ever, the computation ofVsld for arbitrary scoring functions
remains unsolved. Along practical lines, Mott and Tribe[49]
produced an empirical formula forl which works reasonably
well in the large gap-cost regime. Siegmund and Yakir[50]
studied a similar limit where the maximum number of gaps
is finite. Despite all of these studies, the current understand-
ing of the statistics of gapped alignment remains very lim-
ited.

C. Hybrid alignment and solvability of l

The Smith-Waterman algorithm(6) and (10)–(12) is an
example of an algorithm which looks for theoptimalsolution
to a combinatorial problem, the solution being in this case
the optimal alignment and the optimal scoreS. An alterna-
tive approach to solving combinatorial problems such as se-
quence alignment is to look for a class ofprobablesolutions.
This approach has been taken in a number of previous stud-
ies of global alignment, e.g., the maximum-likelihood
method[51,52], the finite-temperature method[17,53], and
the hidden Markov model[54]. The probabilistic approach

has also been used in Smith-Waterman–type local alignment:
In the HMM approach as implemented in the “sequence
alignment and modeling” software suite[55], local align-
ment is accomplished by embedding probabilistic global
alignment in between “free insertion modules,” which allows
a part of a sequence to fit to the HMM. In a different ap-
proach[56] probabilistic Smith-Waterman is realized by nor-
malizing the probabilistic version of global alignment against
a reference with substitution weights all set to 1. In fact,
probabilistic alignment can be regarded as a special case of
finite-temperature alignment in which the alignment param-
eters are subjected to aprobability conservation condition.
The reason that the gap weightm was split intom=m1

D ·m2
D

=m1
I ·m2

I is to make it possible to satisfy the probability con-
servation conditions.

The advantage of the probabilistic approach lies in the
simple interpretation of the alignment parameters and results.
For example, the abstract gap cost becomes a gap insertion
probability, and the local alignment score lnZ, with Z de-
fined in Eq.(24), between two sequences becomes the over-
all log-likelihood of the evolutionary relation between the
two sequences; see Ref.[21] for more details. However, the
probabilistic approach also bears distinct disadvantages.
Aside from a modest computational speed disadvantage, the
probabilistic approach suffers from ill-characterized score
statistics—unlike the Smith-Waterman local alignment, for
which at least the form of the optimal score distribution is
known for the null model, very little is known about the
distribution of the log-likelihood score lnZ of the probabi-
listic local alignment of random sequences. Arbitrary use of
the z score has been shown empirically not to produce very
good results[57].

In a few previous publications[21,22], we proposed an
alternative approach to sequence alignment. Our “semiproba-
bilistic” (or hybrid) alignment combines the advantages of
both the optimizational and probabilistic approaches to local
alignment. With the Boltzmann weight computed via Eq.
(34), we construct the maximum log-likelihood(MLL ) score

Ffa,b;v,gg = max
1ømøM

1ønøN

hln Zm,nj. s43d

The MLL score is manifestly ahybrid of both the probabi-
listic and optimizational approaches to local alignment. Fol-
lowing reference[21], we refer to alignment based on the
MLL score as “Semiprobabilistic alignment,” and refer to
this algorithm as the “hybrid algorithm.”

In fact, as indicated in Ref.[21], the MLL score statistics
follow the Gumbel form even before the probability conser-
vation conditions are imposed. The corresponding Gumbel
parameterl can again be obtained by solving an equation

similar to Eq.(42) with hsNd=t lnW̃t , i.e.,

lim
t→`

kfW̃tsw,gdglt l0 = 1 s44d

with l.0. The quantityW̃t, which specifies the total Boltz-
mann weight flowing out of a fixed “time” slicet, is

3This choice of scoring functions corresponds to the problem of
the longest common subsequences, see Chavtal and Sankoff[47].
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defined4 by Eq. (50) for the linear gap case and defined by
Eq. (103) for the affine gap case.

The solvability of Eq.(44) comes from the observation
that whenlt is an integerR, the condition(44) becomes

lim
t→`

kfW̃tsw,gdgRl0 = 1, s45d

whose left-hand side is the disorder-averaged partition func-
tion of an R-replica system. Here the random substitution
weightvsam,bnd resulting from random sequence pairsfa,bg
will play the role of expf−usx,t−1d /tg of the DPRM prob-
lem.

WhenR=1, this corresponds to a one replica problem and
was solved[21] by imposing the conservation of Boltzmann
weight, i.e., the weight flowing in equals the weight flowing
out on averageat each lattice point. We call it thefirst solv-
able class. Within this solvable class,l=1/t. Furthermore,
at t=1 this class results in a direct mapping of the finite-
temperature alignment to probabilistic alignment.

The second solvable class, having l=2/t, comes from
R=2 (two replicas). Here the disorder average, introducing
the interactions between the two replicas, complicates the
matter. For a generic DPRM problem, the disorders at differ-
ent time are uncorrelated, therefore the interacting system
can still be cast in the transfer matrix approach[8,58]. The
random sequencesa=fa1,a2, . . . ,aNg andb=fb1,b2, . . . ,bNg,
however, contain only 2N random characters which is much
less than theNsN−1d /2 random potentials of the correspond-
ing DPRM. The factorNsN−1d /2 is most easily seen from
Fig. 3 in which there areNsN−1d /2 vertical bonds under the
horizontal line t=N. Therefore, the random potential from

vsam,bnd inevitably bears stronger correlations. The validity
of ignoring such correlations in the context of match-
mismatch–type of scoring was in fact raised[14] earlier and
was also shown numerically[16,48] to be unimportant when
large score statistics are considered. Furthermore, when the
scoring function is more complicated, such as in the case of
the 20320 amino acid substitution matrix, the correlation
effect will be further reduced. Therefore, although our sec-
ond solvable class is based on the(weak) assumption that we
can ignore the correlation of the disorder potentialvsx,td at
different times, it agrees with numerical studies quite well.
Note that in the sequence alignment problem the disorder
potentialvsx,td resides at the mid point of the bond connect-
ing the lattice pointssx,t−1d andsx,t+1d. This is what make
the transfer matrix formalism of the system a little more
involved than the conventional DPRM.

Since thel parameter of the local alignment statistics
happens to be expressed in terms of its global alignment
counterparts, from this point on we shall focus on theglobal
alignmentunless otherwise stated. In the following two sec-
tions, we will provide the procedures for obtaining the sec-
ond solvable class as well as review some of the relevant one
replica results.

III. LINEAR GAP CASE

Recall that for the linear gap case the Boltzmann weight
Wsx,td follows the recursion(18)

Wsx,t + 1d = n fWsx + 1,td + Wsx − 1,tdg + vsx,tdWsx,t − 1d,

wherevsx,td is the substitution weight andn is the linear gap
weight. In order to obtain the two solvable classes, we fur-
ther introduce the equivalent of chemical potentials in the
following fashion[remembering thatvsx,t−1d=vsam,bnd]:

vsam,bnd → exp†fssam,bnd + 2sg/t‡, s46d

n → expfs− « + sd/tg. s47d

Basically,s can be regarded as the score gain per unit length
or the quantity −s can be regarded as the chemical potential.
For a fixed scoring matrix and fixed gap cost«, the two
solvable classes impose different conditions ons at different
temperature resulting into the two expressions,s1st ;s,gd
ands2st ;s,gd.

Although these expressions are important for the develop-
ment of the “cooling map”[24], we will not delve into it
here. For the purpose of providing the conditions for the two
solvable classes, we simply focus on the relations among the
substitution weightsvsx,td and the gap weightn.

A. One replica „R=1…

As explained earlier, the first solvable class happens at

limt→`kW̃tl0=1. This condition was solved[21] by choosing

2n + kvsam,bndl0 = 1, s48d

which then guarantees thatkW̃tl0=1 for all t and conse-
quently ast→`. We will usev to denote the disorder aver-
aged substitution weight, i.e.,

4The quantityW̃t is analogous to the quantityW̃N,N defined in[21]
that sums the Boltzmann weights flowing out of the boundaries
s0ømøN,n=Nd and sm=N,0ønøNd.

FIG. 3. The alignment lattice turned 45 ° counterclockwise com-
pared to Fig. 2.
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v = kvsa,bdl0 ; o
a,bPx

psadpsbdvsa,bd. s49d

Before providing a rigorous derivation of the condition(48),
let us first clearly define whatW̃t is in the context of the
linear gap case:

W̃t = o
x

Wsx,td + o
x8

vsx8,tdWsx8,t − 1d. s50d

Note that ifx is summed over even integers thenx8 will be
summed over odd integers and vice versa. The open circles
in Fig. 3 indicate the vertices whose weights are summed
over at timet=6. The double slash on the bonds indicate that
no weight flow through those bonds should be included.

Let fsx,td denotekWsx,tdl0; we may then write down
easily the corresponding iterative equation

fsx,t + 1d = vfsx,t − 1d + n ffsx + 1,td + fsx − 1,tdg,

s51d

whereas the quantitykW̃tl0 is obtained by

kW̃tl0 = o
x

fsx,td + vo
x8

fsx8,t − 1d. s52d

Equation(51) can be easily solved by going through discrete
Laplace transform and Fourier transforms. Defining

fẑsxd ; o
t=0

`

ẑtfsx,td, s53d

fẑskd ; o
x

e−ikxfẑsxd, s54d

we obtain

fẑsxd − dx,0 = ẑ2vfẑsxd + ẑn ffẑsx + 1d + fẑsx − 1dg,

fẑskd − 1 = fẑ2v + 2ẑn cosskdgfẑskd.

Apparently, the quantity of interestkW̃tl0 corresponds to

kW̃tl0 = r dẑ

2pi
Ffẑsk = 0d

ẑt+1 + v
fẑsk = 0d

ẑt G
= r dẑ

2pi

1

ẑt+1

1 + vẑ

1 − ẑ2v − 2nẑ
.

When n=s1−vd /2, we may rewritevẑ2+2nẑ−1 as vẑ2+ ẑ
−vẑ−1=svẑ+1dsẑ−1d. Therefore the contour integral be-
comes

r dẑ

2pi

1

ẑt+1

1

1 − ẑ
= 1 ∀ t.

WhennÞ s1−vd /2, the quantitykW̃tl0 either diverges expo-
nentially with time (when 2n+v.1) or exponentially de-
creases with time(when 2n+v,1). Because of the disorder

potential, we know thatW̃t will assume different values for

different realizations of the disorder potential. Therefore,

ksW̃t−kW̃tl0d2l0.0, and consequentlykW̃t
2l0. kW̃l0

2. For the

two replica solution, we need to keepkW̃t
2l0 constant, which

demands 2n+v,1.

B. Two replicas „R=2…

To calculatekW̃t
2l0, we need to define a few notations first.

Let us denote the variance of the disorder potential asD, i.e.,

kvsx,tdvsx8,t8dl0 − v2 = Ddx,x8dt,t8. s55d

We further define the following quantities:

fsx1,x2,td ; kWsx1,tdWsx2,tdl0, s56d

f.sx1,x2,td ; kWsx1 + 1,t + 1dWsx2,tdl0, s57d

f,sx1,x2,td ; kWsx1,tdWsx2 + 1,t + 1dl0. s58d

It is obvious thatf.sx1,x2,td=f,sx2,x1,td since the order
inside the disorder average does not matter, i.e., theWsx,tds
are commuting entities. Nevertheless, it turns out to be more

convenient to define bothf. and f,. The quantitykW̃t
2l0

can now be expressed in terms of thefs,

kW̃t
2l0 = o

x1,x2

kWsx1,tdWsx2,tdl0

+ o
x1,x28

kWsx1,tdvsx28,tdWsx28,t − 1dl0

+ o
x18,x2

kvsx18,tdWsx18,t − 1dWsx2,tdl0

+ o
x18,x28

kvsx18,tdvsx28,tdWsx18,t − 1dWsx28,t − 1dl0

= o
x1,x2

fsx1,x2,td + o
x1,x2

fDdx1,x2
+ v2gfsx1,x2,t − 1d

+ v o
x1,x2

ff.sx1,x2,t − 1d + f,sx1,x2,t − 1dg.

Note that because of our definition off. and f,, the sum
over x18sx28d in kWWl0 is replaced by the sum overx1sx2d in
f. and f,. If we Fourier transformf and f.s,d, we see
that the most of the terms above contain only the zero mo-
mentum Fourier component, except the term multiplied by
Ddx1,x2

, which gives rise to zero “center of mass” momen-
tum, but collects the full spectrum of the “relative” momen-
tum.

The reason that using Eqs.(56)–(58) is sufficient for solv-
ing this two-replica problem relies on the decomposition of
unequal time correlations. Basically, ifut− t8uù2, say t− t8
ù2, we have5

5Although we will not exploit this decomposition here, we would
like to point out that this feature can be used to compute the stress
correlations[59] between two points at different depths in a granu-
lar system describable by theq model [60].
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kWsx,tdWsy,t8dl0 = o
x8

kWsx8,t8dWsy,t8dl0kĝsx,t;x8,t8dl0

= o
x8

kWsx8,t8dWsy,t8dl0kWsx − x8,t − t8dl0.

s59d

This decomposition happens because the disorder after time
t8 has no influence toWsy,t8d and it is in general true that
ĝsx,t ;0 ,0d=ox8ĝsx8 ,t8 ;0 ,0dĝsx,t ;x8 ,t8d and that upon dis-
order average,kWsx,t ;x8 ,t8dl0 becomes translationally in-
variantkWsx−x8 ; t− t8dl0, which is thefsx−x8 ,t− t8d defined
earlier in the one replica section.

We now study the iterative equations.

fsx1,x2,t + 1d = kWsx1,t + 1dWsx2,t + 1dl0

= khvsx1,tdWsx1,t − 1d + n fWsx1 + 1,td

+ Wsx1 − 1,tdgjhvsx2,tdWsx2,t − 1d

+ n fWsx2 + 1,td + Wsx2 − 1,tdgjl0

= sDdx1,x2
+ v2dfsx1,x2,t − 1d

+ n vff,sx1,x2,t − 1d + f,sx1,x2 − 2,t − 1dg

+ n vff.sx1,x2,t − 1d + f.sx1 − 2,x2,t − 1dg

+ n2 ffsx1 + 1,x2 + 1,td + fsx1 + 1,x2 − 1,td

+ fsx1 − 1,x2 + 1,td + fsx1 − 1,x2 − 1,tdg,

s60d

f.sx1,x2,t + 1d = kWsx1 + 1,t + 2dWsx2,t + 1dl0

= kWsx2,t + 1dWsx1 + 1,t + 2dl0

= kWsx2,t + 1dhvsx1 + 1,t + 1dWsx1 + 1,td

+ n fWsx1 + 2,t + 1d + Wsx1,t + 1dgjl0

= vf,sx1 + 1,x2 − 1,td + n ffsx1 + 2,x2,t + 1d

+ fsx1,x2,t + 1dg, s61d

f,sx1,x2,t + 1d = kWsx1,t + 1dWsx2 + 1,t + 2dl0

= kWsx1,t + 1dhvsx2 + 1,t + 1dWsx2 + 1,td

+ n fWsx2 + 2,t + 1d + Wsx2,t + 1dgjl0

= vf.sx1 − 1,x2 + 1,td + n ffsx1,x2 + 2,t + 1d

+ fsx1,x2,t + 1dg. s62d

Note that the recursive relations for Eqs.(61) and (62) hold
true even if we sett=−1. This simply relates the initial con-
ditions of f.s,d to that off.

Introducing the discrete Laplace and Fourier transforms
similar to Eqs.(53) and (54), we have

fẑsx1,x2d ; o
t=0

`

ẑtfsx1,x2,td, s63d

fẑ
ksyd ; o

x1,x2

e−iksx1+x2ddx1−x2,2yfẑsx1,x2d, s64d

fẑ
k,l ; o

y

e−2ilyfẑ
ksyd. s65d

Upon discrete Laplace transform, we have

fẑsx1,x2d = dx1,0dx2,0 + ẑ2sDdx1,x2
+ v2dfẑsx1,x2d

+ ẑ2n vffẑ
,sx1,x2d + fẑ

,sx1,x2 − 2dg

+ ẑ2n vffẑ
.sx1,x2d + fẑ

.sx1 − 2,x2dg

+ ẑn2 ffẑsx1 + 1,x2 + 1d + fẑsx1 + 1,x2 − 1d

+ fẑsx1 − 1,x2 + 1d + fẑsx1 − 1,x2 − 1dg, s66d

and

fẑ
.sx1,x2d = ẑvfẑ

,sx1 + 1,x2 − 1d + n ffẑsx1 + 2,x2d

+ fẑsx1,x2dg, s67d

fẑ
,sx1,x2d = ẑvfẑ

.sx1 − 1,x2 + 1d + n ffẑsx1,x2 + 2d

+ fẑsx1,x2dg. s68d

We now do the first Fourier transform

fẑ
ksyd = dy,0 + ẑ2sDdy,0 + v2dfẑ

ksyd + ẑ2n vffẑ
,ksyd

+ e−2ikfẑ
,ksy + 1dg + ẑ2n vffẑ

.ksyd + e−2ikfẑ
.ksy − 1dg

+ ẑn2 fe2ikfẑ
ksyd + e−2ikfẑ

ksyd + fẑ
ksy + 1d + fẑ

ksy − 1dg,

s69d

and

fẑ
.ksyd = ẑvfẑ

,ksy + 1d + n fe2ikfẑ
ksy + 1d + fẑ

ksydg, s70d

fẑ
,ksyd = ẑvfẑ

.ksy − 1d + n fe2ikfẑ
ksy + 1d + fẑ

ksydg. s71d

We now proceed to do the second Fourier transform:

fẑ
k,l = 1 + ẑ2Dfẑ

ksy = 0d + fẑ2v2 + 2ẑn2 scos 2k + cos 2ldgfẑ
k,l

+ ẑ2n vse−2ik+2il + 1dfẑ
,k,l + ẑ2n vse−2ik−2il + 1dfẑ

.k,l ,

s72d

and

fẑ
.k,l = ẑve2ilfẑ

,k,l + nse2ik+2il + 1dfẑ
k,l , s73d

fẑ
,k,l = ẑve−2ilfẑ

.k,l + nse2ik−2il + 1dfẑ
k,l , s74d

which then leads to(upon solving forf.s,d in terms off)

fẑ
.k,l = nfẑ

k,l 1 + e2ik+2il + ẑvse2il + e2ikd
1 − ẑ2v2 , s75d
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fẑ
,k,l = nfẑ

k,l 1 + e2ik−2il + ẑvse−2il + e2ikd
1 − ẑ2v2 . s76d

It is then straightforward to calculate the following combina-
tion:

s1 + e−2ik−2ildfẑ
.k,l + s1 + e−2ik+2ildfẑ

.k,l

= s1 − ẑ2v2d−1nfẑ
k,lhs1 + e−2ik−2ilds1 + e2ik+2ild

+ ẑvs1 + e−2ik−2ildse2il + e2ikd

+ s1 + e−2ik+2ilds1 + e2ik−2ild + ẑvs1 + e−2ik+2ild

3se−2il + e2ikdj

=
4nfẑ

k,l

1 − ẑ2v2f1 + cos 2k cos 2l + ẑvscos 2k + cos 2ldg.

s77d

Substituting back into Eq.(72), we obtain

Gẑ
k.l−1fẑ

k,l = 1 +Dẑ2fẑ
ksy = 0d, s78d

where

Gẑ
k,l−1 ; 1 − ẑ2v2 − 2ẑn 2scos 2k + cos 2ld

−
4ẑ2n 2v

1 − ẑ2v2f1 + cos 2k cos 2l

+ ẑvscos 2k + cos 2ldg. s79d

The expression in Eq.(79) indicates that bothẑv and ẑn 2

are dimensionless. For convenience, we introduce the fol-
lowing dimensionless parameters:

z; ẑv,

D̃ ; D/v2,

v ; n 2/v. s80d

Note that it is always thek=0 limit we need; we therefore
can simplify the calculation by settingk=0 first. To lighten
the notation, we only retain the variablel. Thus,fẑ

k=0,l be-
comesfl andfẑ

ksy=0d becomesfsy=0d. Upon settingk=0,
Eq. (79) reads

Gl−1 = H1 − z2 − 2zv
1 + z

1 − z
s1 + cos 2ldJ

=
1 + z

1 − z
fs1 − zd2 − 2zv − 2zv cos 2lg. s81d

Therefore, we have

fl =
s1 − zdf1 + D̃z2fsy = 0dg

s1 + zdfs1 − zd2 − 2zv − 2zv cos 2lg
. s82d

We now employ the following identities:

fẑsy = 0d =
1

p
E

0

p

fẑ
l e2il30dl, s83d

1
Îa2 − b2

=E
0

2p du

2p

1

a − b cosu
if a2 . b2. s84d

Note that if we assumea=s1−zd2−2zv andb=2zv, we im-
mediately seea2−b2=s1−zd4−4zvs1−zd2=s1−zd2fs1−zd2

−4zvg.0. The reason is thats1−zd2−4zv.0. This can be
seen by checking whether 1−z is greater than 2Îzv or not.
Equivalently, we are asking whetherÎẑsÎẑv+2nd,1 is true.
Since ẑø1 andv+2n,1, we see that is always true. Con-
sequently, we have

fsy = 0d =
1 + D̃z2fsy = 0d

s1 + zdÎs1 − zd2 − 4zv
, s85d

or equivalently

fsy = 0d =
1

s1 + zdÎs1 − zd2 − 4zv − D̃z2
, s86d

Eq. (86) can then be substituted into Eq.(82) to obtain the
complete expression forfl.

The expression forf.s,d also simplifies greatly when we
setk=0. For example, we now have

f.l =
nfl

1 − ẑv
s1 + e2ild, s87d

f,l =
nfl

1 − ẑv
s1 + e−2ild. s88d

With the relations found above, it is now a good time to

write down explicitly the quantitykW̃t
2l0 we need to calcu-

late,

kW̃t
2l0 = r dẑ

2pi
H1 + ẑv2

ẑt+1 fl=0 + v
f.l=0 + f,l=0

ẑt

+ D
fsy = 0d

ẑt J . s89d

When D=0, i.e., no randomness, we expect to see thatW̃t

=kW̃tl0 and kW̃t
2l0=kWt

˜ l0
2. Therefore, whenD=0 and 2n

+v=1, we expect the expression(89) to be simplified to

r dẑ

2pi

1

ẑt+1

1

1 − ẑ
.

This disorder-free limit in fact can be verified in a straight-
forward manner.

WhenDÞ0, we need to make sure thatfsy=0d does not
have anyẑ pole such thatuẑu,1 (or uzu,v) to guarantee that

kW̃t→`
2 l0=const. Furthermore,fsy=0d should have a pole at

ẑ=1 (or uzu=v) under the condition 2n+v,1. To better vi-
sualize when this will happen, let us look at the expression

fsy=0d=1/fs1+zdÎs1−zd2−4zv−D̃z2g. There are two parts
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in the denominator. Let us call the expressions1
+zdÎs1−zd2−4zv the first part and −D̃z2 the second part.
Note that both the first part and the second part have a nega-
tive derivative with respect toz for v.0 and 0,z,v,1.
Furthermore, whenz=0, the first expression takes the value
1 while the second expression takes the value 0. Thus, the
whole denominator offsy=0d is a decreasing function ofz
with value 1 whenz=0. If we have the denominator set to
zero atz=v, then the denominator will stay positive while
0øz,v. This implies the following choice:

s1 + vdÎs1 − vd2 − 4n2 = D. s90d

This condition basically constrains the magnitude ofD to be
smaller thans1+vds1−vd=1−v2. It is obvious from Eq.(90)
that the special case 2n+v=1 will lead to D=0.

Condition (90) is tested by an extensive numerical simu-
lation att=1 using the PAM120 scoring matrix of the PAM
series substitution matrices[25] and a linear gap cost«
=4.5. Figure 4 shows the normalized score histogram ob-
tained from aligning half a million pairs of random se-
quences of lengthN=600 along with a fit of the Gumbel
form (39). The tail is given by the parameterl=2.0±0.02 as
expected from 2/t=2/1=2.

C. Two-replica bound state

In the context of the regularR-replica DPRM problem,
the partition function of a DP of lengtht is simply our pre-

vious definition of W̃t. In a similar fashion, the disorder-

averaged, normalized restricted partition function

lim
t→`

fsx1,x2, . . . ,xR,td

o
x1,x2,. . .,xR

fsx1,x2, . . . ,xR,td
s91d

gives the probability density of finding replicai at positionxi
for all i =1,2, . . . ,R. The Laplace transformed quantity
fẑsx1,x2, . . . ,xRd is nothing but

o
x1,x2,. . .,xR

fẑsx1,x2, . . . ,xRd = o
t=0

`

ẑtkW̃t
Rl0.

By gradually increasing the value ofẑ from 0, the above
quantity increases; whenẑ= ẑ0, the above quantity diverges.
This suggests that we can write the expression in Eq.(91) as

fẑ0
sx1,x2, . . . ,xRd

o
x1,x2,. . .,xR

fẑ0
sx1,x2, . . . ,xRd

.

Actually, the quantityẑ0 is closely related to the ground state
energy of theR-replica system. It has been used to calculate
the ground state energy of a few-replica DPRM system[8].

In general, the disorder average results in an attractive
potential among the replicas[2]. Therefore, one can write the
disorder-averagedR-replica partition function as[8]

kW̃t
Rl0 = e−FRstd/tkWt

˜ l0
R,

with the ground state energy of theR replica given by[8]

ER = lim
t→`

ft−1FRstdg.

This relation connects the Laplace variableẑ0 and the ground
state energy ofR-replica system

ER = tFRS lim
t→`

lnkW̃tl0

t
D + ln ẑ0G .

Another way to viewER is to look at its continuous time
counterpart. Basically, one may write down a time evolution
equation forfsx1,x2, . . . ,xR,td, and the lowest eigenvalue of
the time evolution operator is analogous to ourER here.

For a two replica system, it is of interest to investigate
how the probability density decays with the two replicas’
relative distancey. That is, we consider the quantity

lim
t→`

fk=0sy,td
fk=0,l=0std

=
fẑ0

k=0syd

fẑ0

k=0,l=0 .

The quantityfẑ
k=0syd can be computed by the inverse Fou-

rier transform of Eq.(65), i.e.,

fẑ
k=0syd =E

0

p

fẑ
k=0,le−2ily dl

p
. s92d

Furthermore, sincefẑ
k=0,l=0 is independent ofy and l, we can

simply divide both the left-hand side and right-hand side of
Eq. (92) by fẑ0

k=0,l=0 to achieve

FIG. 4. The normalized histogram and the Gumbel fit under the
condition(90) at t=1. The alignment scores were obtained by first
generating sequence pairs according to probability distribution(36)
and then aligning each sequence pair according to the algorithm
described by Eqs.(23) and (43). The relations between the scoring
function and the substitution weight and linear gap weight are sum-
marized in Eqs.(46) and (47) with the chemical potential “−s”
chosen to satisfy the solvability condition(90). Each random se-
quence generated has lengthN=600. The circles represent the
alignment score histogram of 500 000 random sequence pairs using
the PAM120 scoring matrix and linear gap cost«=4.5. The solid
line corresponds to a fit to the Gumbel form(39) with l=2.0 as
expected, together with the other fitted parameter lnk=lnsKN2d
=12.4. The error bar associated withl is about 0.02, i.e.,l
=2±0.02 from the fitting.
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fẑ
k=0syd

fẑ
k=0,l=0 =E

0

p fẑ
k=0,l

fẑ
k=0,l=0e−2ily dl

p
. s93d

Using the above expression, Eq.(86) and (82), we obtain

fẑ
k=0syd

fẑ
k=0,l=0 =E

0

p fs1 − zd2 − 4zvge−2ily

s1 − zd2 − 2zv − 2zv coss2ld
dl

p

=E
0

2p du

2p

fs1 − zd2 − 4zvge−iyu

s1 − zd2 − 2zv − 2zv cosu
. s94d

Becausey takes integer value, it is easy to see that the final
expression in Eq.(94) is an even function ofy. Therefore one
may assumey.0 and proceed without loss of generality. Let
us introduce the complex variablet=reiu together with the
short notationsa=s1−zd2−2zv and b=2zv, we rewrite the
last expression of Eq.(94) as

1

2pi
r utu=1

dt

t

1

ty
a − b

a −
b

2
st + 1/td

=
1

2pi
r utu=1

dt

ty
a − b

ta −
b

2
st2 + 1d

.

Note that for ẑ in range of interest 0ø ẑø ẑ0, we have
a.b.0. Aside fromb.0 by definition, we seea.b from
Eq. (86) where we haveÎa−b being real and positive in the
range of interest 0ø ẑø ẑ0. The integrand, aside from the
pole at the origin(when yù1), has two poles att1=sa
+Îa2−b2d /b andt2=sa−Îa2−b2d /b. Note that 0, t2,1 and
t1.1. Since we are mainly interested in the largey limit to
find the decay length, it is most direct to deform the contour
of integration to a large circle withutu→`. By doing this, we
need to deform the contour around thet1 pole and the inte-
gral becomest1

−ys2/bdsb/2Îa2−b2d=e−2yfslnt1d/2g /Îa2−b2.
Therefore the decay length,d is given by 2/ lnft1sẑ0dg

with ẑ0 given by setting the denominator of Eq.(86) to zero.
More explicitly, the decay length is given by

Hln
1 − ẑ0v + Îs1 − ẑ0vd2 − 4ẑ0n 2

2Îẑ0n
J−1

, s95d

with ẑ0 satisfying

1 + ẑ0v

ẑ0
2

Îs1 − ẑ0vd2 − 4ẑ0n 2 = D s96d

for given n=e−«̄/t, v=ke−usx,td/t l0, and variance D

=ke−2usx,td/t l0−v2.
Our analysis here provides the two-replica bound state

characteristics. These characteristics can form the bases of
useful approximations when solving the generalR-replica
problem or even shed light on its exact solution. However,
we will not delve into more details here since the main goal
of this paper is to provide the details of the second solvable
class. After our short exposition of the two replica bound
state here, and the detailed description for the linear gap case
in Sec. III A and III B, we now turn to the affine gap case
whose solution can be more useful in terms of application in
biosequence alignments.

IV. AFFINE GAP CASE

The algebra in this case becomes much more involved.
However, we can exploit our experience from solving the
linear gap case to make this tedious procedure more trac-
table. Similarly to the linear gap case(46) and (47), the
“chemical potential,” −s, is introduced via

vsam,bnd → expfsssam,bnd + 2sdd/t,

n → expfs− « + sd/tg,

m → expfs− d + sd/tg. s97d

Let us now rewrite the recursion relation(30) in the sx,td
coordinate system. We have introduced here one new param-
eter m9, which was set to zero in Eq.(30), to allow for a
directed path running along the vertical direction to turn to
the horizontal direction without moving along the diagonal
direction first(see Fig. 2). We therefore have

WSsx,t + 1d = vsx,tdfWSsx,t − 1d + m1
DWDsx,t − 1d

+ m1
I WIsx,t − 1dg,

WDsx,t + 1d = m2
DWSsx − 1,td + nWDsx − 1,td

+ m2
Dm9m1

I WIsx − 1,td,

WIsx,t + 1d = m2
I WSsx + 1,td + nWIsx + 1,td

+ m2
I m8m1

DWDsx + 1,td, s98d

with the initial condition given by WSsx,t=0d=dx,0,
WDsIdsx,t=0d=0, andWSsD,Idsx,t,0d=0. Note that the con-
dition m1

DsIdm2
DsId=m, with m being the gap opening weight,

still holds true even when the extra parameterm9 is intro-
duced.

As we have shown earlier[21], probability conservation
(good for the one replica solution) leads to the following
equations which the weight parameters have to satisfy simul-
taneously:

kvsx,tdl0 + m2
D + m2

I = 1,

m1
I kvsx,tdl0 + n + m2

Dm9m1
I = 1, s99d

m1
Dkvsx,tdl0 + n + m2

I m8m1
D = 1.

The interpretation of these conditions is exceedingly simple.
Basically, each of these equations constrains the weight flow
out of eachWSsD,Id to be the same as what flows into each of
those modes(substitutions, deletions, and insertions). For a
more general purpose, however, we will set the right-hand
sides of Eqs.(99) to be a constantk with the understanding
that for the one replica solutionk=1. Together with two
other conditions,m2

DsIdm1
DsId=m that relate themD,I’s, we can

uniquely determine the relationships among all of the align-
ment parameters using Eqs.(99). The results are
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m1
D =

m

m2
D =

sk + m − nd2 − s1 − m8ds1 − m9dm2

ksk + m8m − nd
, s100d

m1
I =

m

m2
I =

sk + m − nd2 − s1 − m8ds1 − m9dm2

ksk + m9m − nd
, s101d

kvl0 =
kfsk − nd2 − m8m9m2g

sk + m − nd2 − s1 − m8ds1 − m9dm2 . s102d

In the application to the one replica solution, wherek
=1, Eq.(102) can be used[21] to obtain the valuekvl0 and
thus the amount of shift in score needed. In the two replica
solution, however, we would like to make sure that the prob-
ability in the three possible states are depleted by the same
amount. As we will show later, the condition analogous to
Eq. (90) for the two replica system can be obtained and will
determine the value ofkvl0. Therefore Eq.(102) determines
thek value, which then determines them1s2d

DsId values uniquely.

Before embarking on the solution, let us first clearly write

down whatW̃t is:

W̃t = o
x

Wsx,td + o
x8

W Ssx8,t + 1d. s103d

As before,Wsx,td;W Ssx,td+W Dsx,td+W Isx,td, and if x is
summed over even integers thenx8 will be summed over odd
integers, and vice versa.

For our analytical computation, we found another defini-
tion of auxiliary field more useful, namely,

YSsx,td ; W Ssx,td + YDsx,td + YIsx,td,

YDsx,td ; m1
DWDsx,td,

YIsx,td ; m1
I WIsx,td. s104d

Interestingly, WSsx8 ,t+1d=vsx,tdYSsx,t−1d and we can
write Wsx,td=YSsx,td+CdY

Dsx,td+CiY
Isx,td where the new

constantsCd;s1/m1
Dd−1 andCi ;s1/m1

I d−1 are introduced
for convenience. Before discussing the details involved in
solving the affine gap case, let us write down first the itera-
tive Eq. (98) in terms of the new auxiliary quantities defined
in Eq. (104),

YSsx,t + 1d = vsx,tdYSsx,t − 1d + YDsx,t + 1d + YIsx,t + 1d,

YDsx,t + 1d = mYSsx − 1,td + sn − mdYDsx − 1,td

− ms1 − m9dYIsx − 1,td,

YIsx,t + 1d = mYSsx + 1,td + sn − mdYIsx + 1,td

− ms1 − m8dYDsx + 1,td. s105d

Using the above recursion relations and the methods in
Sec. III A, we can establish the one replica result(first solv-
able class) more mathematically. We will, however, not delve

into this known solution[21] here. Instead, we would like to
focus more on the two replica solution to obtain the second
solvable class.

We start by writing down the quantityW̃ t
2 in terms of the

newly definedY variables.

W̃std2 = o
x1,x2

fYSsx1,td + CdY
Dsx1,td + CiY

Isx1,tdg

3fYSsx2,td + CdY
Dsx2,td + CiY

Isx2,tdg

+ o
x1,x28

fYSsx1,td + CdY
Dsx1,td + CiY

Isx1,tdg

3vsx28,tdY
Ssx28,t − 1d

+ o
x18,x2

vsx18,tdY
Ssx18,t − 1d

3fYSsx2,td + CdY
Dsx2,td + CiY

Isx2,tdg

+ o
x18,x28

vsx18,tdvsx28,tdY
Ssx18,t − 1dYSsx28,t − 1d.

s106d

BecauseYDsIdsx,td can be expressed as linear combinations
of YSsD,Id at time t−1, the only unequal time piece comes
from YSsx,tdYSsx8 ,t−1d. Before embarking on the study of
the time evolution of quantities such askYSsx1,tdYSsx28 ,t
−1dl0 and kYSsx18 ,t−1dYDsx2,tdl0, let us define all the rel-
evant quantities needed for future calculation.

fS+Ssx1,x2,td ; kYSsx1 + 1,t + 1dYSsx2,tdl0,

fSS+sx1,x2,td ; kYSsx1,tdYSsx2 + 1,t + 1dl0,

fSSsx1,x2,td ; kYSsx1,tdYSsx2,tdl0,

fSDsx1,x2,td ; kYSsx1,tdYDsx2,tdl0,

fSIsx1,x2,td ; kYSsx1,tdYIsx2,tdl0,

fDSsx1,x2,td ; kYDsx1,tdYSsx2,tdl0,

fDDsx1,x2,td ; kYDsx1,tdYDsx2,tdl0,

fDIsx1,x2,td ; kYDsx1,tdYIsx2,tdl0,

fISsx1,x2,td ; kYIsx1,tdYSsx2,tdl0,

fIDsx1,x2,td ; kYIsx1,tdYDsx2,tdl0,

fIIsx1,x2,td ; kYIsx1,tdYIsx2,tdl0.

Apparently, there is symmetry that we should spell out.
For example,fDSsx1,x2,td=fSDsx2,x1,td. The consequence
of this is that fDSsk, ld=fSDsk,−ld. Pairs exhibiting such
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symmetry includeffSI,fISg, ffID ,fDIg, etc. In a similar

fashion to the definition offS+S and fSS+, we find the fol-
lowing intermediate variables useful:

fD+Ssx1,x2,td ; kYDsx1 + 1,t + 1dYSsx2,tdl0,

fSD+
sx1,x2,td ; kYSsx1,tdYDsx2 + 1,t + 1dl0,

fI+Ssx1,x2,td ; kYIsx1 + 1,t + 1dYSsx2,tdl0,

fSI+sx1,x2,td ; kYSsx1,tdYIsx2 + 1,t + 1dl0.

As before, we see easily thatfSD+
sx1,x2,td=fD+Ssx2,x1,td.

There are four such pairs above. Furthermore, such symme-
try implies fSD+

sk, ld=fD+Ssk,−ld. Therefore, in the final
Laplace-Fourier form, there ares11−3d+s8−4d=12 inde-
pendent variables to take care of. This number of variables is
considerably larger than the linear gap case where only two
independent variables were needed. After introducing the rel-
evant variables, the next step is to write down their corre-
sponding evolution equations, and then perform the discrete
Laplace and Fourier transforms analogous to those in Eq.
(63)–(65). Although the framework so far is quite general,
we will focus mainly on three scenarios in our analytical
effort, i.e.,m8=m9=1, m8=m9=0, andm8=1,m9=0. The first
two cases are symmetric, while the last one is asymmetric.

Experience from solving the linear gap case tells us that
the most important quantity to consider isfẑ

SSsy=0d, which
is nothing but takingy=0 in the expression

o
x1,x2

dx1−x2,2ye
−iksx1+x2d/2Fo

t=0

`

ẑtfSSsx1,x2,tdG .

Because of the extensive algebra involved in the derivation,
we will only document the key results from the three cases
(i.e.,m8=m9=1, m8=m9=0, andm8=1,m9=0) where this im-
portant quantityfẑ

SSsy=0d is calculated. The detailed proce-
dure will be described in the appendixes where the evolution
equations, their general developments, and the specialized
cases of interest will be documented.

As before, the variance of the random potential is defined
to beD, i.e.,

kvsx,tdvsx8,t8dl0 − v2 = Ddx,x8dt,t8.

Before documenting the main results for the three cases, let
us first define a few notations similar to these in Eq.(80)

z= ẑv,

a = sn − md/m,

b = m2/v,

D̃ = D/v2, s107d

where ẑ is the variable introduced for the discrete Laplace
transform. As discussed in the linear gap case, the key ingre-

dient for makingkW̃t
2l0 finite is to make sure thatfẑ

SSsy=0d
has no pole with 0, uẑu,1 and that it has a pole at exactly
ẑ=1. Since in general the quantityfẑ

SSsy=0d can be written
as

fq
SSsy = 0d =

1

Gexp
−1 sẑd − Dẑ2 , s108d

the aforementioned condition can be achieved by setting

Gexp
−1sẑd − Dẑ2uẑ=1 = 0. s109d

To investigate how condition(109) can be satisfied, we need
the explicit expression forGexp, which unfortunately is quite
complicated for each case. But in general, it always contains
three components and the first component is always the
same. That is, we can write

Gexp= Gexp
1 + Gexp

2 + Gexp
3 s110d

with

Gexp
1 =

a2

s1 + ad2 − a2z2 . s111d

We now document the three casessm8=1,m9=1d, sm8
=0,m9=0d, andsm8=1,m9=0d separately.

A. m8=1 and m9=1

In this case, we have

Gexp
2 =

s1 − a2bzd3/2

s1 + a − azdDaszdÎF2
aszd

, s112d

Gexp
3 =

2af1 − as1 + adbzgÎN3
aszd

s1 + a + azdDaszdÎF31
a szdF32

a szd
, s113d

with

Daszd = s1 + ad + f1 − 3a2b − a3b − 2as1 + bdgz

+ as1 + ab + 2a2bdz2 − a3bz3, s114d

F 2
aszd = 1 − f2 + s2 + ad2bgz+ f1 + 2as2 + adbgz2 − a2bz3,

s115d

N 3
aszd = 1 −as2 + adbz− a2bz2 + a4b2z3, s116d

F 31
a szd = 1 + f1 − as2 + adbgz− a2bz2, s117d

F 32
a szd = 1 +z− as2 + adbz2 − a2bz3. s118d

Figure 5(a) demonstrates our numerical test of the above
analytical result. The histogram presented is obtained from
aligning uncorrelated random sequence pairs using the
PAM120 matrix [25] with the so-calleds11,1d affine gap
cost at temperaturet=1. As expected, the resultingl is l
=2/t=2. See figure caption for more details.

Although the algebra needed to arrive at this result is
complicated, this nevertheless is the case where we can take
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the linear gap limit. In the linear gap limit, we havem=n,
and thusa=0. Upon settinga=0 and b=v, we find that
Gexp

1 =Gexp
3 =0 and

Gexp= Gexp
2 =

1

s1 + zdÎ1 − 2z− 4vz+ z2
.

This is consistent with the former expression(86) for the
linear gap case.

B. m8=0 and m9=0

In this case, we have

Gexp
2 =

f1 − s1 + ad2bzg3/2

s1 + a − azdDbszdÎF2
bszd

, s119d

Gexp
3 =

2fa + s1 − ads1 + ad2bzgÎN3
bszd

s1 + a + azdDbszdÎF31
b szdF32

b szd
, s120d

with

Dbszd = s1 + ad + f1 − 2a − s1 + ad3bgz

+ fa − s1 + ad2s3 − 2adbgz2 + s1 − a2dabz3,

s121d

F 2
bszd = 1 − f2 + s1 + ad2bgz+ f1 − 2s1 − a2dbgz2

− s1 − ad2bz3, s122d

N 3
bszd = 1 − s1 + ad2bz− s1 + ad2bz2 − s1 − ads1 + ad3b2z3,

s123d

F 31
b szd = 1 + f1 − s1 + ad2bgz+ s1 − a2dbz2, s124d

F 32
b szd = 1 +z+ s1 − a2dbz2 − s1 − ad2bz3. s125d

Figure 5(b) demonstrates our numerical test of the above
analytical result. The histogram presented is obtained from
aligning uncorrelated random sequence pairs using the
PAM120 matrix [25] with the so-calleds11,1d affine gap
cost at temperaturet=1. As expected, the resultingl is l
=2/t=2. See figure caption for more details.

C. m8=1 and m9=0

This is the case that was adopted in the hybrid alignment
method[21]. The purpose of havingm9=0 is to avoid over-
counting of equivalent gapping in alignment. In this case, we
have

FIG. 5. The histograms and the Gumbel fits using the conditions
(109) at t=1 for three cases studied analytically. The alignment
scores were obtained by first generating sequence pairs according to
probability distribution(36) and then aligning each sequence pair
according to the algorithm described by Eqs.(34), (35), and (43).
The relations between the scoring function and the substitution
weight and gap weights are summarized in Eq.(97) with the chemi-
cal potential “−s” chosen to satisfy the solvability condition(109).
Each random sequence generated has lengthN=600. The circles
represent the alignment score histogram of 500 000 random se-
quence pairs using the PAM120 scoring matrix and(11,1) affine gap
costs, i.e.,d=12 and«=1. The numerical fitting of the normalized
histogram(pdf) results inl=2.0±0.02 as expected. The solid lines
correspond to fits to the Gumbel form(39) with l=2.0, together
with the other fitted parameter lnk=lnsKN2d. For case(a), where
m8=m9=1, lnsKN2d is found to be 12.55 from fitting; for case(b),
wherem8=m9=0, lnsKN2d is found to be 12.5 from fitting; for case
(c), where m8=1 and m9=0, lnsKN2d is found to be 12.52 from
fitting.

YI-KUO YU PHYSICAL REVIEW E 69, 061904(2004)

061904-16



Gexp
2 =

f1 − as1 + adbzg2

s1 + a − azdDcszdÎF2
cszd

, s126d

Gexp
3 =

2af1 − as1 + adbzgN 3
cszd

s1 + a + azdDcszdÎF31
c szdF32

c szdF33
c szd

, s127d

with

Dcszd = s1 + ad + f1 − 2a − s1 + ad3bgz

+ af1 − s1 + ads1 − 2adbgz2 − a3bz3, s128d

F 2
cszd = 1 − 2f1 + s1 + ad2bgz+ f1 + bs− 2 + 4as1 + ad

+ s1 + ad4bdgz2− 2a2bf1 + s1 + ad2bgz3 + a4b2z4,

s129d

N 3
cszd = 1 − s1 + ad2bz− as1 + adbz2 + a3s1 + adb2z3,

s130d

F 31
c szd = 1 −a2bz2, s131d

F 32
c szd = 1 + f1 − s1 + ad2bgz− a2bz2, s132d

F 33
c szd = 1 + f1 − s1 + ad2bgz− 2as2 + adbz2

− a2bf1 − s1 + ad2bgz3 + a4b2z4. s133d

Figure 5(c) demonstrates our numerical test of the above
analytical result. The histogram presented is obtained from
aligning uncorrelated random sequence pairs using the
PAM120 matrix [25] with the so-calleds11,1d affine gap
cost at temperaturet=1. As expected, the resultingl is l
=2/t=2. See figure caption for more details.

V. SUMMARY AND OUTLOOK

In this paper we give a self-contained introduction to the
sequence alignment problem and its connection to the
DPRM problem. This introduction by no means can be re-
garded as a review of the subject. For a more detailed expo-
sition of this subject, readers are referred to Ref.[18] and
references therein. We have also provided the connection be-
tween the linear gap cost case of sequence alignment and the
DPRM problem. In particular, we provide the connection
between the alignment score statistics and the evaluation of
the few-replica partition function of the DPRM system via
Eq. (45). The main results that are related to the alignment
score statistics application include Eqs.(90), (109)–(113),
(119), (120), (126), and(127). Equation(59) and the remarks
around it can also be of important use in the study of granu-
lar systems.

We explained here two solvable classes. The result ob-
tained in Ref.[21] is termed the first solvable class. We
report here the detailed procedure for obtaining the second
solvable class for both the linear gap case(Sec. III) and the

affine gapcase(Sec. IV). Similarly to the first solvable class
case, the condition that allows for the existence of the second
solvable class imposes an equation(solvability condition)
relating different alignment parameters. By introducing the
“chemical potential,” −s1s2dst ,gd, to satisfy the solvability
condition, we find two different hypersurfaces in phase space
for the two solvable classes. Within the first solvable class
the extremal parameterl=1/t, while in the second solvable
classl=2/t.

When using this prediction, however, some caution is nec-
essary. Basically, the predicted statistics from the two solv-
able classes agree well with numerical studies for most fre-
quently used scoring functions and for moderate
temperatures. When the temperature used is very high, the
hypersurfaces from solvable classes are very close to the
phase transition hypersurface, because the local alignment
characteristicsl=1/t s or 2/td→0. In this case, the highest
scoring configuration tends to have its Boltzmann weight
contributed from lots of paths of length comparable to the
system size. In other words, the system easily runs into the
“critical region” and one therefore needs a much larger sys-
tem size to recover the local alignment characteristics.

When temperature is very low, the quantity 2s1s2dst ,gd
needed to achieve the solvability condition tends to be close
to the largest entry of the scoring matrix. This means that
only very fewcharacter pairs out of all possible character
pairs can have substitution weight exp[fssa,bd−2sg /t]
greater than one. Note that this is similar to usingssa,bd
−2s as the effective substitution score in the optimal se-
quence alignment. Therefore, when the system size is not
large enough, the highest score path will contain only a very
small number of character pairs but each with substantial
substitution weight. Because this scenario precludes the ap-
plication of the law of large numbers, our method of using
global alignment to predict local alignment statistics is not
applicable to moderate system size when the temperature is
too low.

Although there are finite size problems at both high tem-
perature and low temperature, these finite size problem can
in principle be resolved if one is willing to perform the simu-
lations on a much larger system, which of course can be very
time consuming. The agreement, between numerically ob-
tained and theoretically predictedl values for generic cases
(not belonging to the solvable classes), does lend support to
our solvability conditions even at the extreme temperature
cases in which direct numerical verifications becomes diffi-
cult (finite size effect). In the future, we plan to combine the
two solvable classes to explore the potential use of the cool-
ing map [24] in both uniform scoring schemes as well as
position-specific scoring schemes.
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APPENDIX A: GENERAL DEVELOPMENT OF THE
EVOLUTION EQUATIONS

In this appendix, we provide the details of how to obtain
the iterative equations of the auxiliary quantities before spe-

cializing to the three cases. Before calculatingkW̃t
2l0, we first

reiterate the definition(55) of the varianceD of the disorder
potential, i.e.,

kvsx,tdvsx8,t8dl0 − v2 = Ddx,x8dt,t8. sA1d

We now present the iterative equations of those fifteen quan-
tities defined above. We will do them strictly in order.

fS +Ssx1,x2,t + 1d = kYSsx1 + 1,t + 2dYSsx2,t + 1dl0

=vfSS+
sx1 + 1,x2 − 1,td + fD+Ssx1,x2,t + 1d + fI +Ssx1,x2,t + 1d, sA2d

fSS+sx1,x2,t + 1d = kYSsx1,t + 1dYSsx2 + 1,t + 2dl0

=vfS +Ssx1 − 1,x2 + 1,td + fSD+
sx1,x2,t + 1d + fSI +

sx1,x2,t + 1d, sA3d

fSSsx1,x2,t + 1d = kYSsx1,t + 1dYSsx2,t + 1dl0=
1
2fkfvsx1,tdYSsx1,t − 1d + YDsx1,t + 1d + YIsx1,t + 1dgYSsx2,t + 1dl0

+ YSsx1,t + 1dfvsx2,tdYSsx2,t − 1d + YDsx2,t + 1d + YIsx2,t + 1dg0g

= 1
2kvsx1,tdYSsx1,t − 1dYSsx2,t + 1d + YSsx1,t + 1dvsx2,tdYSsx2,t − 1dl0

+ 1
2ffDSsx1,x2,t + 1d + fSDsx1,x2,t + 1d + fISsx1,x2,t + 1d + fSIsx1,x2,t + 1dg

=
v
2

kYSsx1,t − 1dfYDsx2,t + 1d + YIsx2,t + 1dg + fYDsx1,t + 1d + YIsx1,t + 1dgYSsx2,t − 1dl0

+ sv2 + Ddx1,x2
dfSSsx1,x2,t − 1d+ 1

2ffDSsx1,x2,t + 1d + fSDsx1,x2,t + 1d + fISsx1,x2,t + 1d + fSIsx1,x2,t + 1dg

= 1
2ffDSsx1,x2,t + 1d + fSDsx1,x2,t + 1d + fISsx1,x2,t + 1d + fSIsx1,x2,t + 1dg+ sv2 + Ddx1,x2

dfSSsx1,x2,t − 1d

+
v
2

hmffSS+
sx1,x2 − 2,t − 1d + fSS+

sx1,x2,t − 1d + fS+Ssx1 − 2,x2,t − 1d + fS+Ssx1,x2,t − 1dg+ sn − md

3ffSD+
sx1,x2 − 2,t − 1d + fSI +

sx1,x2,t − 1d + fD+Ssx1 − 2,x2,t − 1d + fI +Ssx1,x2,t − 1dg− ms1 − m9d

3ffSI +
sx1,x2 − 2,t − 1d + fI +Ssx1 − 2,x2,t − 1dg− ms1 − m8dffSD+

sx1,x2,t − 1d + fD+Ssx1,x2,t − 1dgj, sA4d

fSDsx1,x2,t + 1d = kYSsx1,t + 1dYDsx2,t + 1dl0

=kfvsx1,tdYSsx1,t − 1d + YDsx1,t + 1d + YIsx1,t + 1dgYDsx2,t + 1dl0

=vkYSsx1,t − 1dYDsx2,t + 1dl0 + fDDsx1,x2,t + 1d + fIDsx1,x2,t + 1d

=vfmfSS+sx1,x2 − 2,t − 1d + sn − mdfSD+
sx1,x2 − 2,t − 1d − ms1 − m9dfSI+sx1,x2 − 2,t − 1dg+ fDDsx1,x2,t + 1d

+ fIDsx1,x2,t + 1d, sA5d

fDSsx1,x2,t + 1d = kYDsx1,t + 1dYSsx2,t + 1dl0

=kYDsx1,t + 1dfvsx2,tdYSsx2,t − 1d + YDsx2,t + 1d + YIsx2,t + 1dgl0

=vkYDsx1,t + 1dYSsx2,t − 1dl0 + fDDsx1,x2,t + 1d + fDIsx1,x2,t + 1d

=vfmfS+Ssx1 − 2,x2,t − 1d + sn − mdfD+Ssx1 − 2,x2,t − 1d − ms1 − m9dfI +Ssx1 − 2,x2,t − 1dg+ fDDsx1,x2,t + 1d

+ fDIsx1,x2,t + 1d, sA6d

fSD+
sx1,x2,t + 1d = kYSsx1,t + 1dYDsx2 + 1,t + 2dl0

=kYSsx1,t + 1dfmYSsx2,t + 1d + sn − mdYDsx2,t + 1d − ms1 − m9dYIsx2,t + 1dgl0

=mfSSsx1,x2,t + 1d + sn − mdfSDsx1,x2,t + 1d − ms1 − m9dfSIsx1,x2,t + 1d, sA7d
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fD+Ssx1,x2,t + 1d = kYDsx1 + 1,t + 2dYSsx2,t + 1dl0

=kfmYSsx1,t + 1d + sn − mdYDsx1,t + 1d − ms1 − m9dYIsx1,t + 1dgYSsx2,t + 1dl0

=mfSSsx1,x2,t + 1d + sn − mdfDSsx1,x2,t + 1d − ms1 − m9dfISsx1,x2,t + 1d, sA8d

fSIsx1,x2,t + 1d = kYSsx1,t + 1dYIsx2,t + 1dl0

=kfvsx1,tdYSsx1,t − 1d + YDsx1,t + 1d + YIsx1,t + 1dgYIsx2,t + 1dl0

=vkYSsx1,t − 1dYIsx2,t + 1dl0 + fDIsx1,x2,t + 1d + fIIsx1,x2,t + 1d

=vfmfSS+sx1,x2,t − 1d + sn − mdfSI+sx1,x2,t − 1d − ms1 − m8dfSD+
sx1,x2,t − 1dg+ fDIsx1,x2,t + 1d

+ fIIsx1,x2,t + 1d, sA9d

fISsx1,x2,t + 1d = kYIsx1,t + 1dYSsx2,t + 1dl0

=kYIsx1,t + 1dfvsx2,tdYSsx2,t − 1d + YDsx2,t + 1d + YIsx2,t + 1dgl0

=vkYIsx1,t + 1dYSsx2,t − 1dl0 + fIDsx1,x2,t + 1d + fIIsx1,x2,t + 1d

=vfmfS+Ssx1,x2,t − 1d + sn − mdfI +Ssx1,x2,t − 1d − ms1 − m8dfD+Ssx1,x2,t − 1dg+ fIDsx1,x2,t + 1d

+ fIIsx1,x2,t + 1d, sA10d

fSI +
sx1,x2,t + 1d = kYSsx1,t + 1dYIsx2 + 1,t + 2dl0

=mfSSsx1,x2 + 2,t + 1d + sn − mdfSIsx1,x2 + 2,t + 1d − ms1 − m8dfSDsx1,x2 + 2,t + 1d, sA11d

fI +Ssx1,x2,t + 1d = kYIsx1 + 1,t + 2dYSsx2,t + 1dl0

=mfSSsx1 + 2,x2,t + 1d + sn − mdfISsx1 + 2,x2,t + 1d − ms1 − m8dfDSsx1 + 2,x2,t + 1d, sA12d

fDDsx1,x2,t + 1d = kYDsx1,t + 1dYDsx2,t + 1dl0

=kfmYSsx1 − 1,td + sn − mdYDsx1 − 1,td − ms1 − m9dYIsx1 − 1,tdg

3fmYSsx2 − 1,td + sn − mdYDsx2 − 1,td − ms1 − m9dYIsx2 − 1,tdgl0

=m2ffSSsx1 − 1,x2 − 1,td + s1 − m9d2fIIsx1 − 1,x2 − 1,tdg + sn − md2fDDsx1 − 1,x2 − 1,td

+ msn − mdffSDsx1 − 1,x2 − 1,td + fDSsx1 − 1,x2 − 1,tdg

− msn − mds1 − m9dffIDsx1 − 1,x2 − 1,td + fDIsx1 − 1,x2 − 1,tdg

− m2s1 − m9dffSIsx1 − 1,x2 − 1,td + fISsx1 − 1,x2 − 1,tdg, sA13d

fIIsx1,x2,t + 1d = kYIsx1,t + 1dYIsx2,t + 1dl0

=kfmYSsx1 + 1,td + sn − mdYIsx1 + 1,td − ms1 − m8dYDsx1 + 1,tdg

3fmYSsx2 + 1,td + sn − mdYIsx2 + 1,td − ms1 − m8dYDsx2 + 1,tdgl0

=m2ffSSsx1 + 1,x2 + 1,td + s1 − m8d2fDDsx1 + 1,x2 + 1,tdg + sn − md2fIIsx1 + 1,x2 + 1,td

+ msn − mdffSIsx1 + 1,x2 + 1,td + fISsx1 + 1,x2 + 1,tdg

− msn − mds1 − m8dffIDsx1 + 1,x2 + 1,td + fDIsx1 + 1,x2 + 1,tdg

− m2s1 − m8dffSDsx1 + 1,x2 + 1,td + fDSsx1 + 1,x2 + 1,tdg, sA14d

fIDsx1,x2,t + 1d = kYIsx1,t + 1dYDsx2,t + 1dl0

=kfmYSsx1 + 1,td + sn − mdYIsx1 + 1,td − ms1 − m8dYDsx1 + 1,tdg

3fmYSsx2 − 1,td + sn − mdYDsx2 − 1,td − ms1 − m9dYIsx2 − 1,tdgl0
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=m2fSSsx1 + 1,x2 − 1,td + sn − md2fIDsx1 + 1,x2 − 1,td + m2s1 − m8ds1 − m9dfDIsx1 + 1,x2 − 1,td

+ msn − mdffSDsx1 + 1,x2 − 1,td + fISsx1 + 1,x2d − 1,tg

− m2s1 − m9dfSIsx1 + 1,x2 − 1,td − m2s1 − m8dfDSsx1 + 1,x2 − 1,td

− msn − mdfs1 − m8dfDDsx1 + 1,x2 − 1,td + s1 − m9dfIIsx1 + 1,x2 − 1,tdg, sA15d

fDIsx1,x2,t + 1d = kYDsx1,t + 1dYIsx2,t + 1dl0

=kfmYSsx1 − 1,td + sn − mdYDsx1 − 1,td − ms1 − m9dYIsx1 − 1,tdg

3fmYSsx2 + 1,td + sn − mdYIsx2 + 1,td − ms1 − m8dYDsx2 + 1,tdgl0

=m2fSSsx1 − 1,x2 + 1,td + sn − md2fDIsx1 − 1,x2 + 1,td + m2s1 − m8ds1 − m9dfIDsx1 − 1,x2 + 1,td

+ msn − mdffSIsx1 − 1,x2 + 1,td + fDSsx1 − 1,x2 + 1,tdg

− m2s1 − m9dfISsx1 − 1,x2 + 1,td − m2s1 − m8dfSDsx1 − 1,x2 + 1,td

− msn − mdfs1 − m8dfDDsx1 − 1,x2 + 1,td + s1 − m9dfIIsx1 − 1,x2 + 1,tdg. sA16d

The next step is to perform the Laplace-Fourier transform:
Basically, we transformfsx1,x2,td into fẑsk, ld with

fẑsk,ld

= o
y

e−ilyH o
x1,x2

dx1−x2,2ye
−iksx1+x2d/2Fo

t=0

`

ẑtfsx1,x2,tdGJ .

sA17d

The final goal is to express allfẑsk, ld in terms of the free
case(i.e., D=0) and something we can calculate analytically.
To this end, we shall work on each individual equation sepa-
rately first. We also would like to remind the readers of the
symmetries that we mentioned earlier. For example,
fẑ

ISsk, ld=fẑ
SIsk,−ld. In performing the Laplace transform

step,fẑsx1,x2d=ot=0
` fsx1,x2,tdẑt, we have to pay attention to

the following initial conditions:

fS+Ssx1,x2,t = 0d = kYSsx1 + 1,t = 1dYSsx2,t = 0dl0

=kfYDsx1 + 1,t = 1d + YIsx1 + 1,t = 1dgdx2,0l0

=mfdx1,0 + dx1,−2gdx2,0, sA18d

fSS+sx1,x2,t = 0d = kYSsx1,t = 0dYSsx2 + 1,t = 1dl0

=kdx1,0fYDsx2 + 1,t = 1d + YIsx2 + 1,t = 1dgl0

=mdx1,0fdx2,0 + dx2,−2g, sA19d

fSI +
sx1,x2,t = 0d = kYSsx1,t = 0dYIsx2 + 1,t = 1dl0

=mdx1,0dx2+2,0, sA20d

fI +Ssx1,x2,t = 0d = kYIsx1 + 1,t = 1dYSsx2,t = 0dl0

=mdx1+2,0dx2,0, sA21d

fSD+
sx1,x2,t = 0d = kYSsx1,t = 0dYDsx2 + 1,t = 1dl0

=mdx1,0dx2,0, sA22d

fD+Ssx1,x2,t = 0d = kYDsx1 + 1,t = 1dYSsx2,t = 0dl0

=mdx1,0dx2,0, sA23d

fSSsx1,x2,t = 0d = kYSsx1,t = 0dYSsx2,t = 0dl0 = dx1,0dx2,0.

sA24d

The rest of the quantities have their initial values equal to
zero. With these initial conditions given, one can now start
the Laplace-Fourier transform. Even though there are seven
quantities having nonzero initial values, it turns out that the
majority of them do not play much role after the Laplace
transform. To see explicitly, we will go through a couple of
those transforms. Using the first recursion relation, we have

fẑ
S+Ssx1,x2d − mfdx1,0 + dx1+2,0gdx2,0

= ẑvfẑ
SS+sx1 + 1,x2 − 1d+ ffẑ

D+Ssx1,x2d − mdx1,0dx2,0g

+ ffẑ
I+Ssx1,x2d − mdx1+2,0dx2,0g. sA25d

With all the initial values canceling each other, we then have

fẑ
S+Ssx1,x2d = ẑvfẑ

SS+sx1 + 1,x2 − 1d + fẑ
D+Ssx1,x2d

+ fẑ
I +Ssx1,x2d,

fẑ
S +Ssk,yd = ẑvfẑ

SS+sk,y + 1d + fẑ
D+Ssk,yd + fẑ

I+Ssk,yd,

fẑ
S+Ssk,ld = ẑveilfẑ

SS+sk,ld + fẑ
D+Ssk,ld + fẑ

I +Ssk,ld.

sA26d
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A similar calculation onfSS+ then leads to

fẑ
SS+sx1,x2d = ẑvfẑ

S+Ssx1 − 1,x2 + 1d + fẑ
SD+

sx1,x2d

+ fẑ
SI +

sx1,x2d,

fẑ
SS+

sk,ld = ẑve−ilfẑ
S +Ssk,ld + fẑ

SD+
sk,ld + fẑ

SI +
sk,ld.

sA27d

Combining these two equations, we can expressfẑ
SS+sk, ld

andfẑ
S+Ssk, ld in terms of other correlators. That is to say,

fẑ
S +Ssk,ld

=
fẑ

D+Ssk,ld + fẑ
I +Ssk,ld + ẑveilffẑ

SD+
sk,ld + fẑ

SI +
sk,ldg

1 − ẑ2v2

fẑ
SS+sk,ld

=
fẑ

SD+
sk,ld + fẑ

SI +
sk,ld + ẑve−ilffẑ

D+Ssk,ld + fẑ
I +Ssk,ldg

1 − ẑ2v2 .

sA28d

The major equation comes from thefSS part which we
now turn to:

fẑ
SSsx1,x2d = dx1,0dx2,0 + sv2 + Ddx1,x2

dẑ2fẑ
SSsx1,x2d

+ 1
2ffẑ

DSsx1,x2d + fẑ
SDsx1,x2d + fẑ

ISsx1,x2d

+ fẑ
SIsx1,x2dg+

v
2

hmẑ2ffẑ
SS+sx1,x2 − 2d

+ fẑ
SS+sx1,x2d + fẑ

S+Ssx1 − 2,x2d + fẑ
S+Ssx1,x2dg

+ sn − mdẑ2ffẑ
SD+

sx1,x2 − 2d + fẑ
SI +

sx1,x2d

+ fẑ
D+Ssx1 − 2,x2d + fẑ

I +Ssx1,x2dg − mẑ2s1 − m9d

3fẑ
SI +

fsx1,x2 − 2d + fẑ
I+Ssx1 − 2,x2dg

− mẑ2s1 − m8dffẑ
SD+

sx1,x2d + fẑ
D+Ssx1,x2dgj.

sA29d

After the Fourier transform, we then have

fẑ
SSsk,ld = 1 +v2ẑ2fẑ

SSsk,ld + Dẑ2fẑ
SSsk,y = 0d

+ 1
2ffẑ

DSsk,ld + fẑ
SDsk,ld + fẑ

ISsk,ld + fẑ
SIsk,ldg

+
v
2

hmẑ2fe−ik+ilfẑ
SS+sk,ld + fẑ

SS+sk,ld

+ e−ik−ilfẑ
S+Ssk,ld + fẑ

S+Ssk,ldg

+ sn − mdẑ2fe−ik+ilfẑ
SD+

sk,ld + fẑ
SI +

sk,ld

+ e−ik−ilfẑ
D+Ssk,ld + fẑ

I +Ssk,ldg

− mẑ2fs1 − m9de−ikfeilfẑ
SI +

sk,ld + e−ilfẑ
I +Ssk,ldg

+ s1 − m8d„fẑ
SD+

sk,ld + fẑ
D+Ssk,ld…gj. sA30d

We now continue with the rest:

fẑ
SDsx1,x2d = vẑ2fmfẑ

SS+sx1,x2 − 2d + sn − mdfẑ
SD+

sx1,x2 − 2d

− ms1 − m9dfẑ
SI +

sx1,x2 − 2dg

+ fẑ
DDsx1,x2d + fẑ

IDsx1,x2d,

fẑ
SDsk,ld = fẑ

DDsk,ld + fẑ
IDsk,ld

+ vẑ2e−ik+ilfmfẑ
SS+sk,ld + sn − mdfẑ

SD+
sk,ld

− ms1 − m9dfẑ
SI +

sk,ldg, sA31d

and similarly

fẑ
DSsk,ld = fẑ

DDsk,ld + fẑ
DIsk,ld + vẑ2e−ik−ilfmfẑ

S+Ssk,ld

+ sn − mdfẑ
D+Ssk,ld − ms1 − m9dfẑ

I +Ssk,ldg.

sA32d

fẑ
SD+

sx1,x2d − mdx1,0dx2,0 = mffẑ
SSsx1,x2d − dx1,0dx2,0g

+ sn − mdfẑ
SDsx1,x2d

− ms1 − m9dfẑ
SIsx1,x2d,

fẑ
SD+

sx1,x2d = mfẑ
SSsx1,x2d + sn − mdfẑ

SDsx1,x2d

− ms1 − m9dfẑ
SIsx1,x2d,

fẑ
SD+

sk,ld = mfẑ
SSsk,ld + sn − mdfẑ

SDsk,ld − ms1 − m9dfẑ
SIsk,ld,

sA33d

and similarly

fẑ
D+Ssx1,x2d − mdx1,0dx2,0 = mffẑ

SSsx1,x2d − dx1,0dx2,0g

+ sn − mdfẑ
DSsx1,x2d

− ms1 − m9dfẑ
ISsx1,x2d,

fẑ
D+Ssx1,x2d = mfẑ

SSsx1,x2d + sn − mdfẑ
DSsx1,x2d

− ms1 − m9dfẑ
ISsx1,x2d, sA34d

fẑ
D+Ssk,ld = mfẑ

SSsk,ld + sn − mdfẑ
DSsk,ld − ms1 − m9dfẑ

ISsk,ld.

We now go for theSI combinations:
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fẑ
SIsk,ld = fẑ

DIsk,ld + fẑ
IIsk,ld + vẑ2fmfẑ

SS+sk,ld

+ sn − mdfẑ
SI+sk,ld − ms1 − m8dfẑ

SD+
sk,ldg,

sA35d

fẑ
ISsk,ld = fẑ

IDsk,ld + fẑ
IIsk,ld + vẑ2fmfẑ

S+Ssk,ld

+ sn − mdfẑ
I+Ssk,ld − ms1 − m8dfẑ

D+Ssk,ldg,

sA36d

fẑ
SI+sk,ld = eik−ilfmfẑ

SSsk,ld + sn − mdfẑ
SIsk,ld

− ms1 − m8dfẑ
SDsk,ldg, sA37d

fẑ
I+Ssk,ld = eik+ilfmfẑ

SSsk,ld + sn − mdfẑ
ISsk,ld

− ms1 − m8dfẑ
DSsk,ldg, sA38d

fẑ
DDsk,ld = ẑe−ikhm2ffẑ

SSsk,ld + s1 − m9d2fẑ
IIsk,ld − s1 − m9d

Ã„fẑ
SIsk,ld + fẑ

ISsk,ld…g + sn − md2fẑ
DDsk,ld

+ msn − mdffẑ
SDsk,ld + fẑ

DSsk,ld

− s1 − m9d„fẑ
IDsk,ld + fẑ

DIsk,ld…gj, sA39d

fẑ
IIsk,ld = ẑeikhm2ffẑ

SSsk,ld + s1 − m8d2fẑ
DDsk,ld − s1 − m8d

Ã„fẑ
SDsk,ld + fẑ

DSsk,ld…g + sn − md2fẑ
IIsk,ld

+ msn − mdffẑ
SIsk,ld + fẑ

ISsk,ld

− s1 − m8d„fẑ
IDsk,ld + fẑ

DIsk,ld…gj, sA40d

fẑ
IDsk,ld = ẑeilhm2fẑ

SSsk,ld + sn − md2fẑ
IDsk,ld

+ m2s1 − m8ds1 − m9dfẑ
DIsk,ld+ msn − mdffẑ

SDsk,ld

+ fẑ
ISsk,ldg − m2s1 − m9dfẑ

SIsk,ld

− m2s1 − m8dfẑ
DSsk,ld− msn − md

3fs1 − m8dfẑ
DDsk,ld + s1 − m9dfẑ

IIsk,ldgj, sA41d

fẑ
DIsk,ld = ẑe−ilhm2fẑ

SSsk,ld + sn − md2fẑ
DIsk,ld

+ m2s1 − m8ds1 − m9dfẑ
IDsk,ld+ msn − mdffẑ

SIsk,ld

+ fẑ
DSsk,ldg − m2s1 − m9dfẑ

ISsk,ld

− m2s1 − m8dfẑ
SDsk,ld− msn − md

3fs1 − m8dfẑ
DDsk,ld + s1 − m9dfẑ

IIsk,ldgj. sA42d

In real calculations, it seems worthwhile to utilize linear
combinations of these variables instead of the ones defined
originally. Furthermore, since we ultimately are only inter-

ested in the case when the center of mass momentumk=0,
we might as well setk=0 from this point on. We therefore
will abbreviatefẑ

XXsk=0,ld by fXX. The new linear combi-
nations we will adopt are as follows:

Sp = fSS+ + fS+S,

Sm = fSS+ − fS+S,

Dp = fSD+
+ fD+S,

Dm = fSD+
− fD+S,

Ip = eilfSI +
+ e−ilfI +S,

Im = eilfSI +
− e−ilfI +S,

fp
SD= fSD+ fDS,

fm
SD= fSD− fDS,

fp
SI = fSI + fIS,

fm
SI = fSI − fIS,

c p
DI = eilfDI + e−ilfID ,

c m
DI = eilfDI − e−ilfID .

From the definitions offXX, we have

Sp =
s1 + ẑv cos ldDp + scos l + ẑvdIp − isIm − ẑvDmdsin l

1 − ẑ2v2 ,

Sm =
s1 − ẑv cos ldDm + scos l − ẑvdIm − isIp + ẑvDpdsin l

1 − ẑ2v2 ,

Dp = 2mfSS+ sn − mdfp
SD− ms1 − m9dfp

SI,

Dm = sn − mdfm
SD− ms1 − m9dfm

SI,

Ip = 2mfSS+ sn − mdfp
SI − ms1 − m8dfp

SD,

Im = sn − mdfm
SI − ms1 − m8dfm

SD,

and

fSI +
+ fI +S= Ip cos l − iI m sin l ,

fSI +
− fI +S= Im cos l − iI p sin l ,

fDI + fID = c p
DI cos l − ic m

DI sin l ,
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fDI − fID = c m
DI cos l − ic p

DI sin l .

We can also invert the relations and expressfpsmd
SDsIds in terms

of Dp,Dm,Ip,Im, andfSS. Explicitly, we have

fp
SD=

n − m

sn − md2 − m2s1 − m8ds1 − m9d
sDp − 2mfSSd

+
ms1 − m9d

sn − md2 − m2s1 − m8ds1 − m9d
sIp − 2mfSSd,

fm
SD=

n − m

sn − md2 − m2s1 − m8ds1 − m9d
Dm

+
ms1 − m9d

sn − md2 − m2s1 − m8ds1 − m9d
Im,

fp
SI =

ms1 − m8d
sn − md2 − m2s1 − m8ds1 − m9d

sDp − 2mfSSd

+
n − m

sn − md2 − m2s1 − m8ds1 − m9d
sIp − 2mfSSd,

fm
SI =

ms1 − m8d
sn − md2 − m2s1 − m8ds1 − m9d

Dm

+
n − m

sn − md2 − m2s1 − m8ds1 − m9d
Im.

With these new definitions, we can rewrite the equations
of interest in a slightly more compact fashion. For example,
we now write the following:

fSS= 1 +v2ẑ2fSS+ Dẑ2fẑ
SSsy = 0d +

1

2
sfp

SD+ fp
SId

+
v
2

ẑ2hmfs1 + cosldSp + iSm sin l

− s1 − m9dIp − s1 − m8dDpg + sn − mdfsDp + Ipd cos l

+ isDm − Imd sin lgj,

fp
SD= 2fDD + c p

DIcos l − ic m
DIsin l + vẑ2hfmSp

+ sn − mdDpgcos l + ifmSm + sn − mdDmgsin l

− ms1 − m9dIpj,

fm
SD= − c m

DI cos l + ic p
DI sin l

+ vẑ2hfmSm + sn − mdDmg cos l

+ ifmSp + sn − mdDpg sin l − ms1 − m9dImj,

fp
SI = 2fII + c p

DI cos l − ic m
DI sin l + vẑ2hmSp + sn − md

3fIp cos l − iI m sin lg − ms1 − m8dDpj,

fm
SI = c m

DI cos l − ic p
DI sin l + vẑ2hmSm + sn − mdfIm cos l

− iI p sin lg − ms1 − m8dDmj,

fDD = ẑhm2ffSS+ s1 − m9d2fII − s1 − m9dfp
SIg + sn − md2fDD

+ msn − mdffp
SD− s1 − m9dsc p

DI cos l − ic m
DI sin ldgj,

fII = ẑhm2ffSS+ s1 − m8d2fDD − s1 − m8dfp
SDg + sn − md2fII

+ msn − mdffp
SI − s1 − m8dsc p

DI cos l − ic m
DI sin ldgj,

c p
DI = ẑh2m2fSS+ fsn − md2 + m2s1 − m8ds1 − m9dg

3fc p
DI cos l − ic m

DI sin lg + msn − mdffp
SI + fp

SDg

− m2s1 − m9dfp
SI − m2s1 − m8dfp

SD

− 2msn − mdfs1 − m8dfDD + s1 − m9dfIIgj,

c m
DI = ẑhfsn − md2 − m2s1 − m8ds1 − m9dgfcm

DI cos l

− icp
DI sin lg + mnffm

SI − fm
SDg + m2fm8fm

SD− m9fm
SIgj.

A common quantity that constantly appears isSp cos l
+ iSm sin l together withSm cos l + iSp sin l. These two quan-
tities can be readily expressed in terms ofDp,Dm,Ip, andIm:

Sp cos l + iSm sin l = hscos l + ẑvdDp + s1 + ẑv cos ldIp

− iẑvIm sin l + iDm sin lj/s1 − ẑ2v2d,

Sm cos l + iSp sin l = hiDp sin l + iẑvIp sin l + scos l − ẑvdDm

+ s1 − ẑv cos ldImj/s1 − ẑ2v2d.

One thing that jumps out is the combination ofSp+Sp cos l
+ iSm sin l andSm+Sm cos l + iSp sin l, which then give us

s1 + cosldSp + iSm sin l = s1 + ẑvdfs1 + cosldsDp + Ipd

+ isDm − Imd sin lg/s1 − ẑ2v2d,

s− 1 + cosldSp + iSm sin l = s1 − ẑvdfs− 1 + cosldsDp − Ipd

+ isDm + Imd sin lg/s1 − ẑ2v2d,

s1 + cosldSm + iSp sin l = s1 − ẑvdfs1 + cosldsDm + Imd

+ isDp − Ipd sin lg/s1 − ẑ2v2d,

s− 1 + cosldSm + iSp sin l = s1 + ẑvdfs− 1 + cosldsDm − Imd

+ isDp + Ipd sin lg/s1 − ẑ2v2d.

APPENDIX B: THE THREE SPECIALIZED CASES

In this appendix, we describe some more details of how to
obtain Eqs.(108)–(110) for the three specialized cases.

1. The m8=m9=1 case

In this case, the equations can be greatly simplified

fSS= 1 +v2ẑ2fSS+ Dẑ2fẑ
SSsy = 0d + 1

2sfp
SD+ fp

SId

+
v
2

ẑ2hmfs1 + cosldSp + iSm sin lg

+ sn − mdfsDp + Ipd cos l + isDm − Imd sin lgj,
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fp
SD= 2fDD + c p

DI cos l − ic m
DI sin l + vẑ2hfmSp

+ sn − mdDpgcos l + ifmSm + sn − mdDmgsin lj,

fm
SD= − c m

DI cos l + ic p
DI sin l + vẑ2hfmSm + sv − mdDmgcos l

+ ifmSp + sv − mdDpgsin lj,

fp
SI = 2fII + c p

DI cos l − ic m
DI sin l + vẑ2hmSp + sv − md

3fIp cos l − iI msin lgj,

fm
SI = c m

DI cos l − icp
DI sin l + vẑ2hmSm + sn − mdfIm cos l

− iI p sin lgj,

fDD = ẑhm2fSS+ sn − md2fDD + msn − mdfp
SDj,

fII = ẑhm2fSS+ sn − md2fII + msn − mdfp
SIj,

c p
DI = ẑh2m2fSS+ sn − md2fcp

DI cos l − icm
DI sin lg

+ msn − mdffp
SI + fp

SDgj,

c m
DI = ẑhsn − md2fcm

DI cos l − icp
DI sin lg

− msn − mdffm
SD− fm

SIgj.

Furthermore, the relations betweenfXX andDsIdpsmd are very
simple. In particular, we have

fp
SD=

Dp − 2mfSS

n − m
,

fm
SD=

Dm

n − m
,

fp
SI =

Ip − 2mfSS

n − m
,

fm
SI =

Im

n − m
.

We now note that if we callAp;Dp+ Ip andBm;Dm− Im, we
may simplify the calculation when solving forfSS. In fact,
upon using the new variables the equations do simplify and
we only need fDD+fII ;f, and cosl cp

DI − i sin l c m
DI

; f̃DI, and cosl c m
DI − i sin l cp

DI ;fDI. We end up having
three fewer equations:

fSS= 1 +v2ẑ2fSS+ Dẑ2fẑ
SSsy = 0d

+ F 1

2sn − md
+

mẑ2v

2s1 − ẑvdGAp − 2
m

n − m
fSS

+
v
2

ẑ2HF mẑv

1 − ẑv
+ nGfAp cos l + iBm sin lgJ ,

1

n − m
Ap = 4

m

n − m
fSS+

mvẑ2

1 − ẑv
Ap + 2sf + f̃DId

+ vẑ2Fn +
mẑv

1 − ẑv
GfAp cos l + iBm sin lg,

1

n − m
Bm = − 2fDI −

mvẑ2

1 − ẑv
Bm

+ vẑ2Fn +
mẑv

1 − ẑv
GfBm cos l + iAp sin lg,

f = ẑhsn − md2f + mAp − 2m2fSSj,

cos l f̃DI + i sin l fDI = ẑhsn − md2f̃DI + msAp − 2mfSSdj,

cos l fDI + i sin l f̃DI = ẑhsn − md2fDI − mBmj.

The first two equations actually imply

fSS= 1 +v2ẑ2fSS+ Dẑ2fẑ
SSsy = 0d +

1

sn − md
Ap − 4

m

n − m
fSS

− f − f̃DI . sB1d

From these equations, we see that the dimensions ofẑ
,1/v and the dimensions ofv,m2, while m andn have the
same dimensions. We therefore find it more straightforward
to use the dimensionless coefficients defined in Eq.(107).
After defining the lower caseap andbm such thatap=Ap/m
andbm=Bm/m, we have

fSS= 1 + D̃z2fSS+ z2fSSsy = 0d +
1

a
ap − 4

1

a
fSS− f − f̃DI ,

1

a
ap = 4

1

a
fSS+

bz2

1 − z
ap + 2sf + f̃DId + bz2Fa +

1

1 − z
G

3fap cos l + ibm sin lg,

1

a
bm = − 2fDI −

bz2

1 − z
bm

+ bz2Fa +
1

1 − z
Gfbm cos l + iap sin lg,

f = bzha2f + ap − 2fSSj,

cos l f̃DI + i sin l fDI = bzha2f̃DI + sap − 2fSSdj,
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cos l fDI + i sin l f̃DI = bzha2fDI − bmj.

After a tedious calculation withGexp
1 given by Eq.(111), we

obtain

fSS= fGexp
1 + G2 + G3gf1 + D̃z2fSSsy = 0dg, sB2d

where

G2 =
s1 − a2bzd2f1 − s1 − 2ab − a2bdz− a2bz2g

s1 + a − azdDaszdfHd0
2 − Hd1

2 cos lg
,

sB3d

G3 =
2as1 − as1 + adbzds1 + a2bz2dN 3

aszd
s1 + a + azdDaszdfHd0

3 − Hd1
3 cos lg

, sB4d

whereDaszd is given by Eq.(114) and

Hd0
2 = 1 − 2s1 + bdz+ f1 + sa + 2d2a2b2gz2 − 2sa + 2da3b2z3

+ a4b2z4,

Hd1
2 = 2bzfsa + 1d2 − 2asa + 1dz+ a2z2g,

Hd0
3 = 1 + s1 − 2ab − a2bdz− as2 + adbz2 + 2a2b2z3

+ a3sa + 2db2z4 + a4s1 − 2ab − a2bdb2z5 − a6b3z6,

Hd1
3 = 2a†1 + a + af1 − sa + 1d2bgz− a2sa + 1dbz2

‡bz2.

UsingfSSsy=0d=s1/pde0
pfSSdl and integrating both sides of

Eq. (B2) over l from 0 to p, we can then solve forfSSsy
=0d. It is straightforward, with notations defined in Eqs.
(115)–(118), to verify that

ÎsHd0
2 d2 − sHd1

2 d2 = Îs1 − a2bzdF 2
aszdf1 − s1 − 2ab − a2bdz

− a2bz2g,

ÎsHd0
3 d2 − sHd1

3 d2 = ÎN3
aszdF 31

a szdF 32
a szds1 + a2bz2d,

which then lead to Eqs.(108)–(113).

2. The m8=m9=0 case

Whenm8=m9=0, the recursions still have theDsId sym-
metry which we will exploit. We have

fp
SD=

n − m

nsn − 2md
sDp − 2mfSSd +

m

nsn − 2md
sIp − 2mfSSd,

fm
SD=

n − m

nsn − 2md
Dm +

m

nsn − 2md
Im,

fp
SI =

m

nsn − 2md
sDp − 2mfSSd +

n − m

nsn − 2md
sIp − 2mfSSd,

fm
SI =

m

nsn − 2md
Dm +

n − m

nsn − 2md
Im.

With these new definitions, we can rewrite the equations
of interest in a slightly more compact fashion. For example,
we now write the following:

fSS= 1 +v2ẑ2fSS+ Dẑ2fẑ
SSsy = 0d + 1

2sfp
SD+ fp

SId

+
v
2

ẑ2hmfs1 + cosldSp + iSm sin l − Ip − Dpg

+ sn − mdfsDp + Ipd cos l + isDm − Imd sin lgj,

fp
SD= 2fDD + c p

DI cos l − ic m
DI sin l

+ vẑ2hfmSp + sn − mdDpgcos l + ifmSm

+ sn − mdDmgsin l − mIpj,

fm
SD= − c m

DI cos l + ic p
DI sin l + vẑ2hfmSm + sn − mdDmgcos l

+ ifmSp + sn − mdDpgsin l − mImj,

fp
SI = 2fII + c p

DI cos l − ic m
DI sin l + vẑ2hmSp + sn − md

3fIp cos l − iI m sin lg − mDpj,

fm
SI = c m

DI cos l − ic p
DI sin l + vẑ2hmSm

+ sn − mdfIm cos l − iI p sin lg − mDmj,

fDD = ẑhm2ffSS+ fII − fp
SIg + sn − md2fDD

+ msn − mdffp
SD− sc p

DI cos l − ic m
DI sin ldgj,

fII = ẑhm2ffSS+ fDD − fp
SDg + sn − md2fII

+ msn − mdffp
SI − sc p

DI cos l − ic m
DI sin ldgj,

cp
DI = ẑh2m2fSS+ fsn − md2 + m2gfc p

DI cos l − ic m
DI sin lg

+ msn − 2mdffp
SI + fp

SDg− 2msn − mdffDD + fIIgj,

c m
DI = ẑhfsn − md2 − m2gfc m

DI cos l − ic p
DI sin lg

+ mfnfm
SI − nfm

SDgj.

We now note that if we callAp;Dp+ Ip and Bm;Dm
− Im, we may simplify the calculation when solving forfSS.
Note that

fp
SD+ fp

SI =
1

n − 2m
sDp + Ip − 4mfSSd,

fm
SD− fm

SI =
1

n
sDm − Imd.

With the observation above, the equations do simplify when
we further introduce fDD+fII ;f, and cosl c p

DI

− i sin l c m
DI ; f̃DI, and cosl c m

DI − i sin l cp
DI ;fDI. Using

these new definitions, we ended up having three fewer equa-
tions:
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fSS= 1 +v2ẑ2fSS+ Dẑ2fẑ
SSsy = 0d + F 1

2sn − 2md

+
mẑ3v2

2s1 − ẑvdGAp − 2
m

n − 2m
fSS+

v
2

ẑ2HF mẑv

1 − ẑv
+ nG

3fAp cos l + iBm sin lgJ ,

F 1

n − 2m
−

mẑ3v2

1 − ẑv
GAp = 4

m

n − 2m
fSS+ 2sf + f̃DId

+ vẑ2Fn +
mẑv

1 − ẑv
G

3fAp cos l + iBm sin lg,

F1

n
+

mẑ3v2

1 − ẑv
GBm = − 2fDI + vẑ2Fn +

mẑv

1 − ẑv
GfBm cos l

+ iAp sin lg,

f = ẑhfsn − md2 + m2gf + mAp − 2msn − mdf̃DIj − 2ẑm2fSS,

cos l f̃DI + i sin l fDI = ẑhfsn − md2 + m2gf̃DI

+ msAp − 2mfSSd − 2msn − mdfj,

cos l fDI + i sin l f̃DI = ẑhfsn − md2 − m2gfDI − mBmj.

Similar reasoning leads us to use the definition(107) to
lighten the notation. Againap and bm are defined through
ap=Ap/m andbm=Bm/m. We then have

fSS= 1 +z2fSS+ D̃z2fSSsy = 0d +
1

2
F 1

a − 1
+

bz3

1 − z
Gap

−
2

a − 1
fSS+

1

2
z2bF 1

1 − z
+ aGfap cos l + ibm sin lg,

F 1

a − 1
−

bz3

1 − z
Gap =

4

a − 1
fSS+ 2sf + f̃DId

+ z2bFa +
1

1 − z
Gfap cos l + ibm sin lg,

F 1

a + 1
+

bz3

s1 − zdGbm = − 2fDI + z2bFa +
1

1 − z
G

3fbm cos l + iapsin lg,

f = zbhfa2 + 1gf + ap − 2af̃DIj − 2zbfSS,

cos l f̃DI + i sin l fDI = zbhfa2 + 1gf̃DI + ap − 2fSS− 2afj,

cos l fDI + i sin l f̃DI = zbhfa2 − 1gfDI − bmj.

The first two equations actually tell us that

fSS= 1 +Fz2 −
4

sa − 1dGfSS+ D̃z2fSSsy = 0d +
1

a − 1
ap − f

− f̃DI , sB5d

and the five equations relatingap,bm,f ,fDI, andf̃DI can be
turned into

F 1

a − 1
−

bz3

s1 − zd
− bz2Sa +

1

1 − z
Dcos lGap

− i sin l bz2Fa +
1

1 − z
Gbm − 2sf + f̃DId =

4

a − 1
fSS,

− i sin l bz2Fa +
1

1 − z
Gap + F 1

a + 1
+

bz3

1 − z

− bz2Sa +
1

1 − z
Dcos lGbm + 2fDI = 0,

− bz ap + f1 − bzsa2 + 1dgf + 2bza f̃DI

= − 2bz fSS,

− bz ap + 2bza f + fcos l − bzsa2 + 1dgf̃DI + i sin l fDI

= − 2bz fSS,

bz bm + i sin l f̃DI + fcos l − bzsa2 − 1dgfDI = 0.

Subtracting the fourth equation above by the third equa-
tion, we obtain the new fourth equation and thus

fbzsa + 1d2 − 1gf + fcos l − bzsa + 1d2gf̃DI + i sin lfDI = 0.

sB6d

Consequently, we have

F 1

a − 1
−

bz3

s1 − zd
− bz2Sa +

1

1 − z
Dcos lGap

− i sin l bz2Fa +
1

1 − z
Gbm

− 2sf + f̃DId =
4

a − 1
fSS,

− i sin l bz2Fa +
1

1 − z
Gap + F 1

a + 1
+

bz3

1 − z

− bz2Sa +
1

1 − z
Dcos lGbm + 2fDI = 0,

− bz ap + f1 − bzsa2 + 1dgf + 2bza f̃DI = − 2bz fSS,

fbzsa + 1d2 − 1gf + fcos l − bzsa + 1d2gf̃DI + i sin l fDI = 0,
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bz bm + i sin l f̃DI + fcos l − bzsa2 − 1dgfDI = 0.

After a tedious calculation withGexp
1 given by Eq.(111), we

obtain an equation of similar form to Eq.(B2) but with

G2 =
s1 − s1 + ad2bzd2f1 − s1 − sa + 1d2bdzg

s1 + a − azdDbszdfHd0
2 − Hd1

2 cos lg
, sB7d

G3 =
2fa + s1 − ads1 + ad2bzgf1 − s1 − a2dbz2gN3

bszd
s1 + a + azdDbszdfHd0

3 − Hd1
3 cos lg

,

sB8d

where

Hd0
2 = 1 − 2z+ f1 + sa + 1d4b2gz2

− 2f1 − s1 − a2ds1 + ad2bgbz3 + s1 − a2d2b2z4,

Hd1
2 = 2bs1 + a − azd2z,

Hd0
3 = 1 + f1 − s1 + ad2bgz

− s1 + ad2bz2 − 2bz3 − s1 − ads1 + ad3b2z4 + s1

− a2d2f1 − s1 + ad2bgb2z5

+ s1 − a2d3b3z6,

Hd1
3 = 2bhas1 + ad + fa2 + 2as1 − a2db + s1 − a4dbgz

+ as1 − ads1 + a2dz2jz2.

UsingfSSsy=0d=s1/pde0
pfSSdl and integrating both sides of

(B2) over l from 0 to p, we can then solve forfSSsy=0d. It
is straightforward, with notations defined in Eqs.
(122)–(125), to verify that

ÎsHd0
2 d2 − sHd1

2 d2 = Îs1 − s1 + ad2bzdF2
bszd

3†1 − f1 − sa + 1d2bgz‡,

ÎsHd0
3 d2 − sHd1

3 d2 = ÎN 3
bszdF 31

b szdF 32
b szdf1 − s1 − a2dbz2g,

which then leads to Eqs.(108)–(111), (119), and(120).

3. The m8=1 and m9=0 case

Here, we will consider a specialized case wherem8=1.
This, in fact, is the case we commonly used in numerical
work. As one may readily observe, it changes six out of the
nine equations in the general development displayed near the
end of Appendix A, giving

fSS= 1 +v2ẑ2fSS+ Dẑ2fẑ
SSsy = 0d + 1

2sfp
SD+ fp

SId

+
v
2

ẑ2hmfs1 + cosldSp + iSm sin l − Ipg

+ sn − mdfsDp + Ipd cos l + isDm − Imd sin lgj,

fp
SD= 2fDD + c p

DIcos l − ic m
DIsin l

+ vẑ2hfmSp + sn − mdDpgcos l

+ ifmSm + sn − mdDmgsin l − mIpj,

fm
SD= − c m

DIcos l + icp
DIsin l + vẑ2hfmSm + sn − mdDmgcos l

+ ifmSp + sn − mdDpgsin l − mImj,

fp
SI = 2fII + c p

DI cos l − ic m
DI sin l

+ vẑ2hmSp + sn − mdfIp cos l − iI m sin lgj,

fm
SI = c m

DI cos l − ic p
DI sin l

+ vẑ2hmSm + sn − mdfImcos l − iI psin lgj,

fDD = ẑhm2ffSS+ fII − fp
SIg + sn − md2fDD

+ msn − mdffp
SD− scp

DI cos l − icm
DI sin ldgj,

fII = ẑhm2fSS+ sn − md2fII + msn − mdfp
SIj,

c p
DI = ẑh2m2fSS+ sn − md2fc p

DI cos l − ic m
DI sin lg + msn − md

3ffp
SI + fp

SD− 2fIIg − m2fp
SIj, sB9d

c m
DI = ẑhsn − md2fc m

DI cos l − ic p
DI sin lg

+ mfnfm
SI − sn − mdfm

SDgj.

Now it looks more promising to work with the combina-
tions of the variablesfDD ,fII ,cp

DI ,cm
DI ,Dp,Dm,Ip,Im. Basi-

cally, we can transform the equations into those variables
depending onfSS. Explicitly, we will also need to use

fp
SD=

1

n − m
sDp − 2mfSSd +

m

sn − md2sIp − 2mfSSd,

fm
SD=

1

n − m
Dm +

m

sn − md2Im,

fp
SI =

1

n − m
sIp − 2mfSSd,

fm
SI =

1

n − m
Im.

We further note that

Sp =
s1 + ẑv cos ldDp + scos l + ẑvdIp − isIm − ẑvDmd sin l

1 − ẑ2v2

=
s1 + ẑv cos ldsDp + Ipd + iẑvsDm − Imd sin l

1 − ẑ2v2

−
s1 − cosldIp + iI m sin l

1 + ẑv
,
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Sm =
s1 − ẑv cos ldDm + scos l − ẑvdIm − isIp + ẑvDpd sin l

1 − ẑ2v2

=
s1 − ẑv cos ldsDm − Imd − iẑvsDp + Ipd sin l

1 − ẑ2v2

+
s1 + cosldIm − iI p sin l

1 + ẑv
. sB10d

We then turn those nine equations in Eq.(B9) first into

fSS= 1 +v2ẑ2fSS+ Dẑ2fẑ
SSsy = 0d +

1

2
sfp

SD+ fp
SId −

mvẑ2

2
Ip

+
v
2

ẑ2HF m

1 − ẑv
s1 + cosld + sn − mdcos lGsDp + Ipd

+ i sin l F m

1 − ẑv
+ n − mGsDm − ImdJ ,

fp
SD+ fp

SI = 2ffDD + fII + c p
DI cos l − ic m

DIsin lg − mvẑ2Ip

+ vẑ2HF m

1 − ẑv
s1 + cosld + sn − mdcos lG

3sDp + Ipd + i sin l F m

1 − ẑv
+ n − mG

3sDm − ImdJ ,

fp
SI = 2fII + c p

DI cos l − ic m
DI sin l+ vẑ2Hms1 + ẑv cos ld

1 − ẑ2v2

3sDp + Ipd + i
mẑv sin l

1 − ẑ2v2 sDm − Imd −
m

1 + ẑv
Ip

+ Sn − m +
m

1 + ẑv
DsIp cos l − iI m sin ldJ ,

fm
SD− fm

SI = − 2fc m
DI cos l − ic p

DI sin lg − mvẑ2Im

+ vẑ2HF m

1 − ẑv
s− 1 + cosld + sn − mdcos lG

3sDm − Imd + i sin l F m

1 − ẑv
+ n − mG

3sDp + IpdJ ,

fm
SI = c m

DI cos l − ic p
DI sin l+ vẑ2Hms1 − ẑv cos ld

1 − ẑ2v2 sDm − Imd

− i
mẑv sin l

1 − ẑ2v2 sDp + Ipd +
m

1 + ẑv
Im

+ Sn − m +
m

1 + ẑv
DsIm cos l − iI p sin ldJ ,

fDD = ẑhm2fII + sn − md2fDD + mfDp − mfSSg − msn − md

3fc p
DI cos l − ic m

DI sin lgj,

fII = ẑhmfIp − mfSSg + sn − md2fIIj,

c p
DI = ẑh2m2fSS+ sn − md2fc p

DI cos l − ic m
DI sin lg

− 2msn − mdfII + mfIp + Dp − 4mfSSgj,

c m
DI = ẑhsn − md2fc m

DI cos l − ic p
DI sin lg + mfIm − Dmgj.

Given these equations, it is easier for calculation’s purpose to
use

Ap ; sDp + Ipd,

Ip,

Bm ; sDm − Imd,

Im,

f̃DI ; c p
DI cos l − ic m

DI sin l ,

fDI ; cm
DIcos l − icp

DIsin l ,

fII ,

f ; fDD + fII ,

as independent variables. The equation forfSS can be
slightly simplified to reinforce our introducing new nota-
tions.

fSS= 1 +Dẑ2fẑ
SSsy = 0d + Fv2ẑ2 − 4

m

sn − md
− 2

m2

sn − md2GfSS

+
1

sn − md
Ap − sf + f̃DId +

m

sn − md2Ip. sB11d

Together with our previous definitions ofDsIdpsmd, we
now have the other eight equations(in the order offp

SD

+fp
SI, fp

SI, fm
SD−fm

SI, fm
SI, fDD+fII , fII , c p

DI, c m
DI):
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Ap

n − m
+

mIp

sn − md2 = 2ff + f̃DIg − mvẑ2Ip + 2
m

n − m
F2 +

m

n − m
GfSS

+ vẑ2HF m

1 − ẑv
s1 + cosld + sn − mdcos lGAp + i sin l F m

1 − ẑv
+ n − mGBmJ ,

Ip

n − m
= 2fII + f̃DI + vẑ2Fms1 + ẑv cos ld

1 − ẑ2v2 Ap + i sin l
mẑv

1 − ẑ2v2BmG + 2
m

sn − md
fSS

+ vẑ2HFsn − mdcos l +
ms− 1 + cosld

1 + ẑv
GIp − i sin l Fn − m +

m

1 + ẑv
GImJ ,

Bm

n − m
+

mIm

sn − md2 = − 2fDI − mvẑ2Im+ vẑ2HF m

1 − ẑv
s− 1 + cosld + sn − mdcos lGBm + i sin l F m

1 − ẑv
+ n − mGApJ ,

Im

n − m
= fDI + vẑ2Fms1 − ẑv cos ld

1 − ẑ2v2 Bm − i sin l
mẑv

1 − ẑ2v2ApG
+ vẑ2HFsn − md cos l +

ms1 + cosld
1 + ẑv

GIm − i sin l Fn − m +
m

1 + ẑv
GIpJ ,

f = ẑhm2fII + sn − md2f + mfAp − 2mfSSg − msn − mdf̃DIj,

fII = ẑhmfIp − mfSSg + sn − md2fIIj,

f̃DI cos l + ifDI sin l = ẑhsn − md2f̃DI − 2msn − mdfII + mfAp − 2mfSSgj,

fDI cos l + if̃DI sin l = ẑhsn − md2fDI − mBmj.

We again rescale the variables by replacingX (any capital symbol) by mx and using the definition(107) to obtain

ap

a
+

ip
a2 = 2ff + f̃DIg − bz2ip +

2

a
F2 +

1

a
GfSS

+ bz2HF 1

1 − z
s1 + cosld + a cos lGap + i sin l F 1

1 − z
+ aGbmJ ,

ip
a

= f2fII + f̃DIg + bz2F1 + z cos l

1 − z2 ap + i sin l
z

1 − z2bmG +
2

a
fSS

+ bz2HF s− 1 + cosld
1 + z

+ a cos lGip − i sin l Fa +
1

1 + z
GimJ ,

bm

a
+

im
a2 = − 2fDI − bz2im+ bz2HF s− 1 + cosld

1 − z
+ a cos lGbm + i sin l F 1

1 − z
+ aGapJ ,

im
a

= fDI + bz2F1 − z cos l

1 − z2 bm − i sin l
z

1 − z2apG
+ bz2HF s1 + cosld

1 + z
+ a cos lGim − i sin l F 1

1 + z
+ aGipJ ,

f = bzhfII + a2f + fap − 2fSSg − af̃DIj,

fII = bzhfip − fSSg + a2fIIj,
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f̃DI cos l + ifDI sin l = bzha2f̃DI − 2afII + fap − 2fSSgj,

fDI cos l + if̃DI sin l = bzha2fDI − bmj.

Furthermore, the main equation offSSbecomes

fSS= 1 + D̃z2fSSsy = 0d + Fz2 − 4
1

a
− 2

1

a2GfSS+
1

a
ap

− sf + f̃DId +
1

a2ip. sB12d

Following the previous two cases(1. and 2.) discussed in
this appendix, we will order our variables in the following
way:ap,bm,f ,f̃DI ,fDI , ip, im,fII . That is to say, the first five
variables agree with previous definitions. We now arrange
the equations as

ap

a
+

ip
a2 = 2ff + f̃DIg − bz2ip +

2

a
F2 +

1

a
GfSS

+ bz2HF 1

1 − z
s1 + cosld + a cos lGap

+ i sin l F 1

1 − z
+ aGbmJ ,

bm

a
+

im
a2 = − 2fDI − bz2im + bz2HF s− 1 + cosld

1 − z

+ a cos lGbm + i sin l F 1

1 − z
+ aGapJ ,

f = bzhfII + a2f + fap − 2fSSg − af̃DIj,

f̃DI cos l + ifDI sin l = bzha2f̃DI − 2afII + fap − 2fSSgj,

fDI cos l + if̃DI sin l = bzha2fDI − bmj,

ip
a

= f2fII + f̃DIg + bz2F1 + z cos l

1 − z2 ap + i sin l
z

1 − z2bmG
+

2

a
fSS+ bz2HF s− 1 + cosld

1 + z
+ a cos lGip

− i sin l Fa +
1

1 + z
GimJ ,

im
a

= fDI + bz2F1 − z cos l

1 − z2 bm − i sin l
z

1 − z2apG
+ bz2HF s1 + cosld

1 + z
+ a cos lGim

− i sin l F 1

1 + z
+ aGipJ ,

fII = bzhfip − fSSg + a2fIIj.

After a tedious calculation withGexp
1 given by Eq.(111),

we obtain an equation of similar form to Eq.(B2) but with

G2 =
s1 − as1 + adbzd2f1 − „1 − s1 + ad2b…z− a2bzg

s1 + a − azdDcszdfHd0
2 − Hd1

2 cos lg
,

sB13d

G3 =
2af1 − as1 + adbzgs1 + a2bz2dN3

cszd
s1 + a + azdDcszdfHd0

3 − Hd1
3 cos lg

, sB14d

where

Hd0
2 = 1 − 2z+ f1 − 2b + sa + 1d4b2gz2 − 2a2s1 + ad2b2z3

+ a4b2z4,

Hd1
2 = 2bs1 + a − azd2z,

Hd0
3 = 1 + f1 − s1 + ad2bgz− as2 + adbz2 + a3s2 + adb2z4

+ a4f1 − s1 + ad2bgb2z5 − a6b3z6,

Hd1
3 = 2abh1 + a + af1 − s1 + ad2bgz− a2s1 + adbz2jz2.

UsingfSSsy=0d=s1/pde0
pfSSdl and integrating both sides of

(B2) over l from 0 to p, we can then solve forfSSsy=0d. It
is straightforward, with notations defined in Eqs.
(129)–(133), to verify that

ÎsHd0
2 d2 − sHd1

2 d2 = ÎF 2
cszdf1 − „1 − s1 + ad2b…z− a2bzg,

ÎsHd0
3 d2 − sHd1

3 d2 = ÎF 31
c szdF 32

c szdF33
c szds1 + a2bz2d,

which then leads to Eqs.(108)–(111), and(126) and (127).
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